Using TCAD to understand GaN design dependencies for Electric Vehicle applications

Andrew Patterson, EMEA Sales Director, Silvaco Inc.

Gan

Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

Agenda Topics

Typical EV Architecture

- Electric Vehicle trends and performance challenges
- TCAD for GaN design : How it is used today
- ► Extending TCAD : Introducing FTCOTM

Source : PowerElectronics Tips

SILVACO

Source : Spectrum Logic

The EV Problem to be Solved

- Market demand has slowed : Pressure is on EV Manufacturers on Cost, Quality and Usability
- ► GaN can play a vital role in optimizing EV Performance

Car	Battery (kWh)	Range (km)	Performance (km/kWh)	Cost per mile
Tesla Model 3	57.5	416	7.23	6.18p
Hyundai Ioniq	77.4	488	6.59	6.80p
Vauxhall Corsa	51.0	312	6.48	6.92
Dacia Spring	26.8	160	6.40	7.00
Fiat 500e	24.0	136	6.36	7.03
BMW i4 eDrive40	83.9	512	6.35	7.06
Peugeot e-208	51.0	304	6.32	7.08
Mini Cooper E	37.0	232	6.27	7.14

Tesla Model 3

Dacia Spring Electric 45

BMW i4 eDrive 40

Source : cargurus.co.uk 2024

Optimizing for Efficiency

- Our generation has been extravagant with energy resources...
- Environmental arguments, and tax incentives encourage all us to buy Electric Vehicles
- But there is market anxiety : Range, Infrastructure, Depreciation, ReCycling
- GaN based power converters can give is a further few % points of energy efficiency

	Si	GaAs	4H-SiC	GaN
Bandgap (eV)	1.12	1.43	3.26	3.4
Breakdown field (10 ⁶ V/cm)	0.3	0.3	2.5	3.0
Thermal conductivity (W/cm/K)	1.5	0.5	4.5	1.5
Saturated velocity (10 ⁷ cm/sec)	1.0	1.0	2.0	1.5
Electron mobility (cm ² /V/sec)	400	4000	500	1800
Hole mobility (cm ² /V/sec)	480	400	110	150
Dielectric constant	11.9	13.1	10	10.4

Energy Efficiency:

- Internal Combustion : 20-30%
- Electric Vehicle : 75-80%

Source JD Power

TCAD is an essential starting point for GaN design

TCAD allows designers to investigate design options, and predict device behavior

GaN : Multiple Design Variables

Designers can investigate dependencies and improve understanding using TCAD

- Contacts
- Shields
- GaN Buffer

- Molar Concentration
- Impurities

Aluminum Aluminum Silicon Si

Ν

Nitrogen

- RDS On
- Thermal Conductivity
- Gate Capacitance
- Charge Density
- **Blocking Voltage**
- Parasitics
- Transient Switching

Extending TCAD with Design of Experiments (DOE)

- Test Example : Lateral AlGaN/GaN HEMT
 - Optimize BV and RDSON
- Use DOE to identify the variables with high influence
- Use ML to analyze the data and match the simulation to the actual device

"Breakdown voltage improvement of enhancement mode AlGaN/GaN HEMT by a novel stepetched GaN buffer structure" Hao Wu, Xiaojun Fu, Yuan Wang, Jingwei Guo, Jingyu Shen, Shengdong Hu# <u>https://doi.org/10.1016/j.rinp.2021.104768</u>

7

GaN Parameter Analysis

Experiment with the GaN Design Variables

► A collection of simulation results is assembled, with analysis of the most critical variables

	Init	Low	High
scf_GaN	0.6	0.36	0.84
scf_AlGaN	2.1	1.26	2.94
piezo_sc	0.65	0.39	0.91
lev_acc	2.85	1.71	3.99
d_acc	1.000e+17	6e+16	1.4e+17
sig_acc	1.000e-15	6e-16	1.4e-15
lev_don	0.5	0.3	0.7
d_don	2.000e+17	1.2e+17	2.8e+17
sig_don	1.000e-15	6e-16	1.4e-15
lev_Mg	0.16	0.096 0.224	
d_Mg	3.000e+18	1.8e+18	4.2e+18
sig_Mg	1.000e-13	6e-14	1.4e-13
d_int	1.500e+19	9e+18	2.1e+19
lev_int	0.3	0.18	0.42
sig_int	5.000e-14	3e-14	7e-14

Extend the process to include Manufacturing : FTCO™

Gain deep manufacturing variables and improve quality and yield

- Design Targeting:
 - Provide design targets, define design inputs
 - "Digital Twin" model returns input values to achieve the targets
- More efficient, more precise specification
- Determines dominant inputs to rapidly understand and optimize technology
- What does the designer really need to worry about?

Machine Learning algorithm generates Digital Twin

Digital Twin can be used by Fab engineers to improve yield and quality

rameters			Predictors							
	Add to	Predictors							Remo	ve Selecte
	Add to	Add to <u>T</u> argets scf_GG piezo d_int lev_int sig_int		l c					Re	emove All
rgets	Neural Network	Decision	Forest	Fit Info						
					#data	Rsa	AdiR	sa R	MSE	
sum	Hidden Layers	1	Edit	All	17 (.983031		4.88	083e-5	
	Loss	Mean Sqr.	•	Train	15 (.983448		5.05	465e-5	
	Regularization	None	-	Test	l r	nan edictor	 	4.63	788e-5	
	Normalization	Min./Max.	•	Inputs	Uniqu	e Corre	latio	Skew	м	edian
Remove Selected Remove All	Algorithm	Adaptive	_			n	I			
	Enoch	10000		sct_Gal	43	-0.587	5	1.5370	0.6000	
1.9 Calculate iterations 10	✓ Use Seed	4529		d_int	3	-0.052	, 7	1.5370	150000	00000000
Single Fit				lev_int	3	-0.112	4	1.5370	0.3000	
Prodiction Loss Plot	Dataset			sig_int	2	-0.027	4	1.5370	0.0000	
	Test 10%	🗘 Valid.	10% 🜲							
Scatter Plot. 66'Sensitivity	Test is :			Outpu	t Uniqu	e Skew	Med	an Da	taset	
iForest Model Test 🗸	 separated f 	rom Dataset		sum	17	1.5370	0.000	0 17		
Actual/Predicted Pred. Profiler	 NOT separa 	ted from Dat	aset							
Plots 🚽 🚺 MC Simulation	 Test from c 	sv File								

Optimized Digital Twin

FTCO[™] : Amalgamated TCAD, Fab and Digital Twin Data

- Measurement data from fab-out wafers (electrical)
- Measurement data from in-line metrology (structural)
- Device Modeling (TCAD, SPICE) Target Optimization
- Reduce cost of manufacturing / improve time to market
- Fewer wafer runs, failed trials
- More productive use of TCAD

AESIN : Automotive Innovation with Power Electronics (UK)

Supplier Collaboration for Automotive EV

- Compound Semiconductor Research
- Innovative Inverter Designs, Higher Switching Speeds
- Thermal Modelling and Packaging
- High Frequency performance, smaller magnetics, EMF
- ► Failure Modes, Short-Circuits, Aging Models
- Power Train Design
- ► EV ECUs (OBC, Traction Drive Controllers, SDV Controls)

https://aesin.org.uk/

SILVACO Co

Summary

Silvaco FTCO[™] – Optimizing Power Semiconductor Devices

- ► WBG Materials such as GaN are complex to analyze
- Simulation data from TCAD together with harvested Manufacturing data can now be included in the design process (FTCOTM)
- Improved GaN devices mean more efficient EV energy conversion
- ► GaN-based inverters are already being adopted for OBC, BMS applications in EVs

Please check our web site for more information : <u>www.silvaco.com</u>

Email : and rew.patterson@silvaco.com

Thank you. SILVACO

Abstract

Optimizing the use of the available energy-budget in Electric Vehicle design has become a top objective for vehicle manufacturers, and their requirements ripple down the automotive supply chain.

The Benefits of GaN switching devices in automotive power applications are well documented, but how far can these devices be further adapted and improved to win wider adoption in automotive applications?

This presentation will look at the demands of the automotive industry, and the role of TCAD (Technology Computer Aided Design), and FTCO (Fab Technology Co-Optimization) tools in the GaN device design process.

By combining manufacturing data, actual device measurements, and simulation results into the design flow, engineers can maximize GaN device quality and performance.

Compromise on design parameters is application-specific

