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» Construction of Bi-Directional FETs Using Discrete Wide Band Gap Devices

» Features: Block a stress voltage in both polarities and conduct
symmetric current in both directions.

» Major Applications: Current-Source Converters, Multilevel
Inverters, AC-DC Rectifiers, Resonant/Non-Resonant DC/DC
Converters.

» Typical Configuration: Common-source/drain configuration with

two or four discrete devices with different no of gate drivers.

Challenges posed by Discrete GaN-HEMT's

> Higher conduction losses compared to SiC MOSFETs (4.0 times
higher)

» GaN HEMTs are highly sensitive to Junction Temperature and
circuit parasitics.

Chair of Power Electronics | Reza Barzegarkhoo | rbar@tf.uni-kiel.de

[mQ]

On-Resistance R,

Conduction Losses - P, [W]

160

140
120
100
80F
60 F
40

20

100

80F

60

401

20

O "
0 10

On-Resistance R,
SiC MOSFET - C3M0025065J1

On-Resistance R,
GaN Transistor - GS66516T

1.0

0 40 80 120 160
RMS Current on the Device [A]

Conduction Losses

200 0O

40 80 120 160
RMS Current on the Device [A]

Conduction Losses

200

SiC MOSFET - C3M0025065J1

- 3

=

GalN Transistor - GS66516T

20 30 40
RMS Current on the Device [A]

0

0

0

10 20 30
RMS Current on the Device [A]

Slide 4 | 28/11/24



V¥V Introduction

Christian-Albrechts-Universitat zu Kiel

> MonOIithic Bidirectional SWitCh (MBS)-GaN Common-Drain Common-Source
.. e 2%GaN-HEMTs 1*Dual Or 2*SiC-FETs GaN Efficiency
MBS Opportunities: g R GaN Efficiency
v'  Four-Pin Common-Drain-Based B I:‘FI_ ‘ Or . s
v Lateral 2DEG-based design (+-650 V Source-Source ool -
Voltage) (a) (b)

Parallel Connection
4*GaN-HEMTSs

Two controllable gates

Common-Drain Ga

1*MBS-GaN

Go

v
v' Low ON-state parasitic resistance/capacitors.
v’ Easier implementation for better power layout.

pGaN| ?

- ’J%:W ohmic contact —
U"'f ? i GaN
R Vgs,a S,i
| !

: iﬂ] ﬁﬂ AlGaN barrier 'ﬁl’ [Ei
. 1 'L'U i GaN channel ‘
MBS Challenges: cses o Vi GN-CBuffer  2DEG
o . o o = ‘ 9565 § Si-Substrate
*+ Two gate driver/isolated dc supplies. T s o8 WMBS-GaN T
° ° . [ J S
< Termination process for back-gating effect and gate £ ° { i R (a) B
Z10°} °

leakage current. = g #MBSGaN o D-MODE GaN-HEMT
% Short-circuit/thermal management behavior. 2 = G 1L
< Large reverse recovery charge in hard switching w0} °° = & 5, n;sa 11

application (in cascode version). E =, Il

\ i LV E-MODE Si-M GaSiGiu Sy
% Lack of Kelvin-Source Pins. ” | _ , , LD Cascode MBS
0 200 400 600 800 1000
Drain-Source Voltage [V] (b)

ME

=§5Q99 Chair of Power Electronics | Reza Barzegarkhoo | rbar@tf.uni-kiel.de

MBS alternative of Bi-GaN-HEMT constructed based on (a) a lateral normally-OFF GaN-
based fabrication (Panasonic/Infeneon Device +-650V/140 mili Ohm), (b) with a
cascode Si/GaN fashion (Transphorm Device +-650V/70 mili Ohm)
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BIDIRECTIONAL DEVICES

ISOLATION SWITCH

» Experimental Verification of the Protection Scheme

Implemented DC Network to validate the
effectiveness of the protection scheme:

The main connections and elements are
exhibited;

Normal operation of the system is
highlighted by the power flow from the BESS
to the DC load [Green Path]. BESS feeding
the DC Load.

True short-circuit is applied to the BESS
during the normal operation [FUL].
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T. Pereira, H. Beiranvand, M. Liserre, “Advanced Protection Scheme for High-Voltage Li-ion Battery Packs”, PCIM Europe 2023.
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» Application in Fault-Tolerant MWT DC-DC Converter
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Figure 11. Experimental results of the SQAB under a fault at the cell 1 and cell 3 and the posterior reconfiguration to the resulting DC-DC converter: after
the cell 1 be disconnected, the SQAB is reconfigured to a TAB and then when the cell 3 is disconnected the converter is reconfigured to a DAB.

T. Pereira, F. Hoffmann and M. Liserre, "Performance Evaluation of the Multi-winding Redundancy Approach in MTB DC-DC Converters," 2021 IEEE Energy Conversion
= Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 3599-3606. _
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» Application in Reconfigurable DAB Converter
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> Appllcatlon in Reconﬁgurable DAB Converter
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» Application in Reconfigurable DAB Converter
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- 1 Experimental results of the proposed reconfigurable DAB converter at (a) FB-FB Mode [6.3 kW/400 V to 400 V],

(b) HB-FB Mode [4.4 kKW/760 V to 400 V], (c) FB-HB Mode [2 kW/200 V to 400 V], and (d) HB-HB Mode [2.5
kW/400V to 400V]. _
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» Application in Reconfigurable DAB Converter
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MBS-GaN devices temperature in primary and secondary side of the PT after
five minutes continuous running at (a) FB-FB Mode [6,6 kW/400 V- to 400 V], (b)
FB-HB Mode [2,5 kW/200 V to 400 V], (c) HB-FB mode [3.8 kW/770 V to 400 V],

and (d) HB-HB mode [2 kW/400V to 430 V]
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Pareto-Front result for the entire reconfigurable DAB converter at the FB-FB
mode considering the switching/conduction losses of the devices as well as the

core and winding losses of the designed PT and the leakage inductor.
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U Bidirectional power devices are constructed based on back-to-back connection of two or four devices in existing topologies to block a stress voltage in both
polarity or to conduct a current in both direction.

U Large ON-State resistance/parasitic capacitance, large footprint area and power layout consideration are their main shortcomings (e.g., in comparison to SiC
MOSFET, conduction losses increase 4 times when discrete GaN-HEMT is employed in a bidirectional fashion.)

U Monolithic Bidirectional Switch (IMBS) using Lateral GaN-on Si design or Cascode Technique with a common drain can surpass this shortcoming by offering
lower on-state resistance.

U One of its main applications is its utilization as an isolation switch in SSCBs. Due to lower expected on-state resistance of MBS and fast response of GaN-HEMTs, it is
expected to trip an SSCB within less than 200 ns (the obtained value using SiC-based SSCB).

U MBS-GaN can also be incorporated into the multiwinding transformer (IMWT)-based multi-port DAB converters. Based on the analysis done on SSCBs, a fault
detection procedure got developed for wide-band-gap device. Hence, the results for fault tolerant MWT-DAB with both discrete GaN-HEMT's and SiC-FETs got
reported in different working scenarios.

U Thanks to smaller footprint area compared to discrete-based bidirectional device and due to expected lower conduction losses, a reconfigurable DAB converter
with MBS-GaN got developed. This could help to achieve four-different configurations. Compared to conventional DAB converters, the proposed structure can
achieve >91% efficiency even at lower power and for wide range of voltage conversion gain. The power ratio of the designed prototype is 6.6 kW/50 kHz.

U Even though such appealing opportunities, the short circuit ruggedness of MBS-GaN is expected to be poorer than discrete GaN-HEMTSs (less than 1 uS). This
needs a careful thermal modeling.

U MBS-GaN needs two gate drivers, while it is expected to see a reverse recovery loss in its cascode version. DPT can be performed to distinguish the gate driver
dependency to the source-to-source voltage of the device and the switching loss behavior.

P L
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