Overcoming Measurement Challenges In High-Speed GaN Power Devices Marcus Sonst, Senior Application Engineer, Rohde & Schwarz

GaN

Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

Why New Measurement Methods?

- Wideband Gap With Focus On GaN
 - GaN Transistor Switches At Higher Speed
 - Lower Power and Intermediate Voltage Level

Benefits Are Efficiency And Compact Designs!!!

- Looking At the WBG Technology From A Measurement Perspective
 - What Are the Challenges With GaN Designs?
 - Higher System Bandwidth Is Required
 - Common Mode Noise (high dV/dt) Appears At Higher Frequencies
 - Probing Itself Becomes A Challenge
 - Very Low Drive Voltage of GaN Transistor
 - Higher Impact Of Probes On The (DUT) Device Under Test
 - EMI Emissions Due To Fast Rising And Falling Edges

A Lot Of Measurement challenges Are Valid Also For Silicon Carbide Technology

Standard Measurements In Hard-Switching Converter/Inverter Designs

- Single Ended Voltage Measurements (Ground Reference)
 - Low-Side Gate-Source Voltage Validation
 - Minimum and Maximum Gate Voltage)
 - Gate Threshold Voltage (Miller Plateau) & Ringing
 - Gate Resistor Validation (Ensure Dead Time / EMI Related)
 - Ensure That Low-Side Is Off To Prevent Shot-Through
 - Switch-Node Voltage Validation
 - Minimum and Maximum Drain-Source Voltage (No Avalanche Capability With GaN)
 - Ringing
 - Rising and Falling Edges (Impact On EMI)

How To Minimize Ground Loop?

Extended Measurements In Hard-Switching Converter/Inverter Designs

- Differential Voltage Measurements (No Ground Reference)
 - High-Side Gate-Source Voltage Validation
 - Minimum and Maximum Gate Voltage
 - Gate Threshold Voltage
 - Ringing
 - Gate Resistor Validation (Ensure Dead Time / EMI Related)
 - HS-Driver Supply Validation
 - Bootstrap Circuit Voltage / Auxiliary PSU
 - Voltage Level Validation (Minimum, Maximum and Ripple)
 - Current Shunt Measurement
 - Small Voltage Measurement On Higher Voltage (e.g. DC-Bus)

Technology Comparison With Impact On Measurement Methods & Tools

	Rise Time	Gate Voltage Maximum	Gate Voltage Typical	Threshold Voltage	RDSon	Avalanche Capability	Break Down Voltage	Package
GaN Enhanc ement Mode	1,5ns (>200MHz)	-4+6V	0V (off) 5V (on)	1V	4mΩ	No	100V	LGA 2x3mm
Silicon	40ns (>8MHz)	±20V	0V (off) 12V (on)	3V	40mΩ	275mJ (Single Pulse)	100V	D2PAK 10mm x10mm

Main Problems Using Old Measurement Tools And Methods In WBG-Designs

- High-Side Gate Voltage Measurement
 - Conventional HV-Differential Probes
 - Bandwidth Up To 200MHz HV-Differential Probes
 - Common Mode Rejection Ratio (CMRR) At Higher Frequency
 - High-Speed Differential Probes (<60V)
 - Bandwidth Up To At Least 1GHz
 - Common Mode Rejection Ration At Higher Frequency 48V Design with 30dB CMMR Shows 1,4V Measurement Error

Good CMRR At Higher Frequency (e.g. 500MHz) Is Not Only About The Measurement Tool / Instrument!

Problems With Standard Probing Methods

- HV-Differential (200MHz) Probe Example (1m Cable)
 - Leads Are Not Shielded Or Twisted (Immunity)
 - Lead Length Is Critical
 - Connection To DUT
- Improvements
 - Use Twisted Cable
 - Use Soldered In
 - Keep The Cable Length To 10cm (Compensated)

GaN Technology Requires A Different Solution!

Frequency domain

,< 10MHz

New Measurement Tools & Methods

- Fully Optical Isolated Probing System
 - An Analog Frontend Of The Oscilloscope Is Built Inside The Probe Head
 - High Bandwidth Of 1GHz Is Possible
 - The Frontend Solution Also Provides Low Voltage Measurement At high frequency With Low Noise (Current Shunt)
 - CMMR of 75dB Is Possible Due To Isolation
- Coax System Is Part Of The Probing Solution
 - MMCX Connection Is The Best Trade-Off between Electrical Performance And Space
 - Coax System Also Helps To Suppress External Noise And Transients
 - Max Voltage of 300V Is Allowed
 - Design In Into The PCB Is Required
 - Space On The PCB Is Required >> Power Loop Gets Larger
- Single Channel Approach Is Beneficial Because It Can Not Couple Between Two Channels

Case Study Of Synchronous GaN Buck Converter Design

High-Side Gate Voltage Measurement With Different Probes

- High Voltage
 Differential Probe
 (f_{BW}=200MHz / CMRR = 30dB)
- High Bandwidth / Low Voltage
 Differential Probe
 (f_{BW}=1GHz / CMRR = 30dB)
- Isolated Probing System
 (f_{BW}=1GHz / CMRR =75dB)

Shows All Details And High Signal Fidelity

Summary

- Standard High Voltage Probes Do Not Provide Enough Bandwidth & CMRR
- High Frequency Low Voltage Differential Probes Do Not Provide Enough Common Mode Rejection Ratio At High Frequency
- If The Probing Is Not Based On Coax (MMCX), This Will Degrade The CMRR Significantly
- Coax Systems Like The MMCX Requires Design-In And Space In The Layout