

Bodo's Wide Bandgap Event 2025

Making WBG Designs Happen

GaN

Cambridge GaN Devices at a Glance

The Fast-paced Scaleup Making Green Electronics Possible

A fabless semiconductor company designing, developing and commercializing energy-efficient GaN-based power devices and ICs

Operating from

4

Locations

Innovation

130+

Patent applications

Employees

~60

And expanding

Knowledge

Academic excellence and industry expertise combined

Eco-compatible business measures (**ESG**)

Innovation

Innovative power solutions that help protect the environment

Cooperation, empowerment, respect, listening to customers, employees and partners

camgandevices.com © 2025 CGD

CGD Vision

Leveraging ICeGaN® for use in automotive applications

2025 >

FOCUS

INDUSTRIAL

Volume reduction
High efficiency

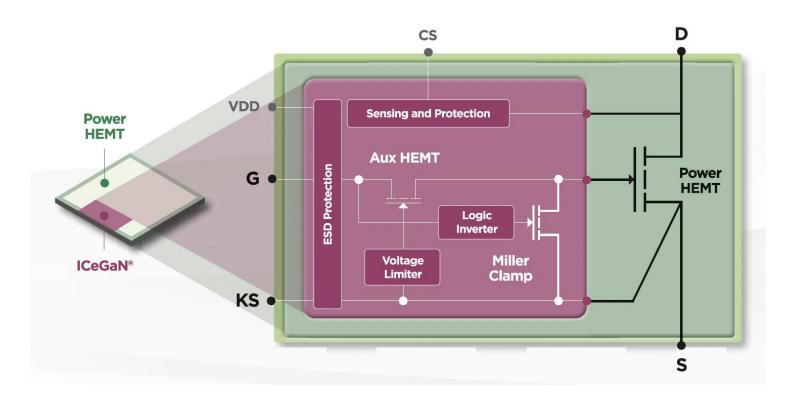
2023 >

DATACENTRE and **TELECOM**

Achieving high power density and efficiency for Next Gen Al Data Centers

FOCUS

AUTOMOTIVE

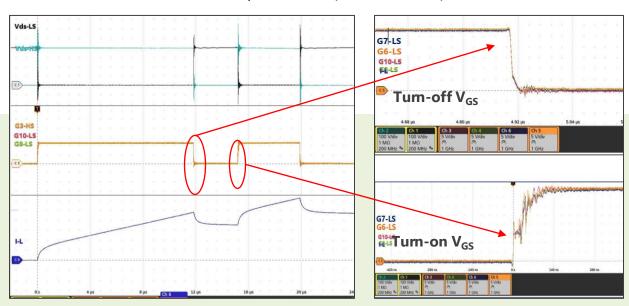

Component downsizing
Reduced form factor OBCs
and DCDC converters

Reduced system losses
Lightweight and compact
motors

ICeGaN®: Easy-to-Use GaN power transistors

Combined System Performance with Ease of Use

- ✓ Monolithically integrated features
- ✓ Aux HEMT for increased Vth ~3V
- ✓ Miller clamp for unipolar operation & safe turn off
- ✓ Current sense and protection for increased functionality
- ✓ Better noise immunity & reliability


Scaling ICeGaN® for High Power

ICeGaN Offers Ease-of-Paralleling with Standard MOSFET and IGBT Gate Drivers

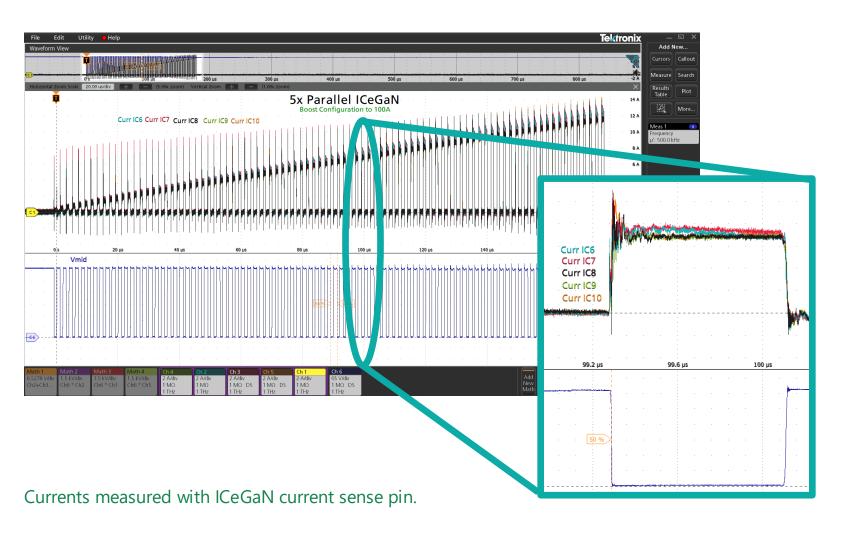
ICeGaN Half-Bridge Paralleling Test – $x5 / 55 \text{ m}\Omega$

Double pulse test (650 V / 65 A)

Tests show 5 pcs of ICeGaN in parallel with

Clean and Stable Switching

waveform at 400 V/65 A hard-switching without parasitic oscillation.



ICeGaN simplifies GaN adoption in high-power industrial and automotive applications

ICeGaN® for high power & frequency

5x parallel ICeGaN devices behave like a single switch.

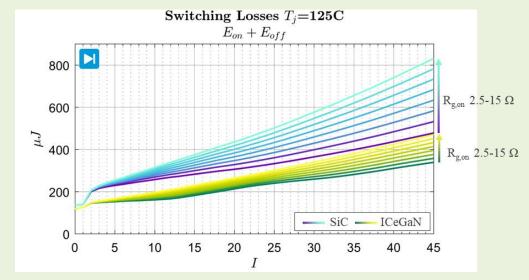
Testing Parameters:

- ▶ 400 V input
- 500 kHz switching frequency (90 pulses)
- Peak current 100 A

ICeGaN features combine to create an **effective single switch** that has 5x the rated current of an individual device.

No de-rating is needed for x5 ICeGaN in parallel.

ICeGaN® Benefits versus state of the art SiC

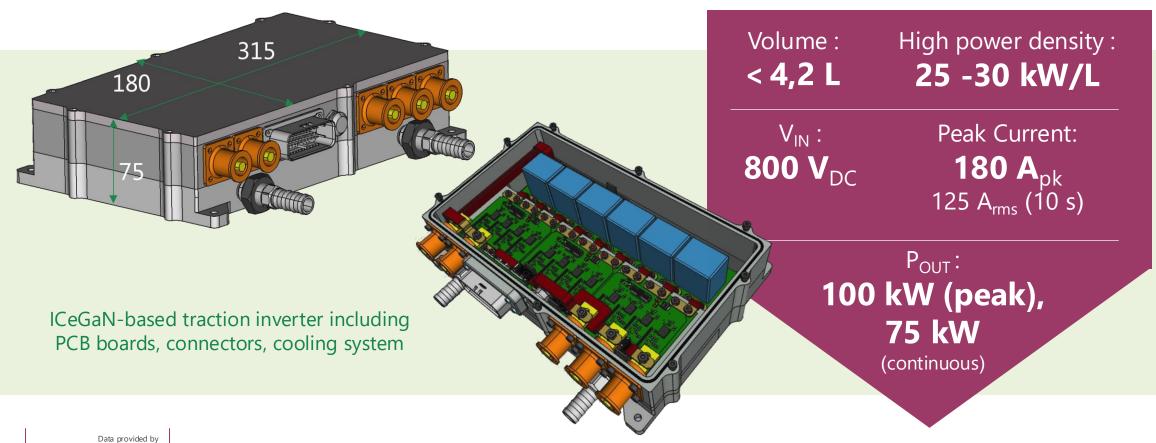

Switching losses comparison of ICeGaN versus SiC

ICeGaN® enables a 30 – 60 % reduction in switching losses*:

- > Enabling higher switching frequency operation
- > Higher system efficiencies

Benefits of Higher Switching Frequency:

- ➤ Low Current ripple --> Reduction in Copper Losses
- ➤ Low Flux ripple --> Lower Iron Losses
- ➤ Low Charge Ripple --> Reduction in DC Link Capacitor


ICeGaN® enables a higher frequency operation

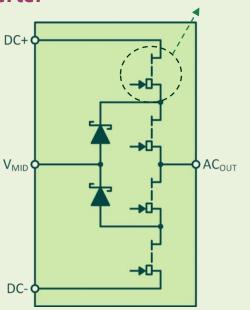
^{*}compared to a state of the art SiC Discrete MOSFET for the same voltage and RDSon class.

ICeGaN® in Automotive Traction Inverter

Demo Board: Mechanical Integration

Increase the power density of your Traction Inverter with CGD's ICeGaN

ICeGaN® in 3-level NPC Inverter

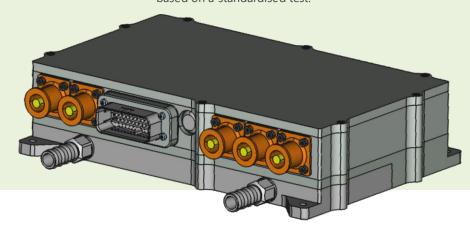

Advantages of 3-level NPC Inverter in Electric Vehicles

3-level NPC Inverter

- Allows for the use of 650 V power devices with 800 V DC bus
- Reduced switching loss due to lower switching voltage than 2-level inverter
- Improved efficiency through utilisation of GaN devices

Single phase of 3-level NPC inverter

ICeGaN

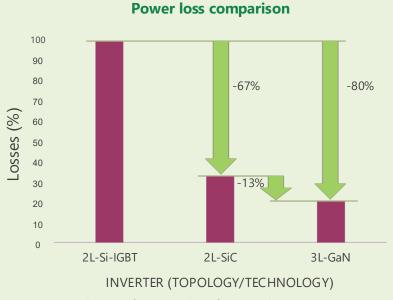

Advantages for Electric Vehicles

Increase in WLTP range* & consequent reduction in charging cycles of batteries

Reduction in battery volume and consequent cost for the same WLTP range.

*WLTP range: maximum distance an EV will travel on a single charge, based on a standardised test.

3-level NPC inverter allows use of efficient power devices, improving the EV performance


ICeGaN® Benefits in Automotive Traction Inverter

GaN-based 3L-inverter vs IGBT-based & SiC-based 2L-inverters

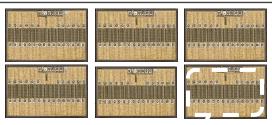
Switching frequency impact* 1600 45 kHz 1400 1200 SiC 1200 V 2L Inverter (800 V_{DC}) 1000 Losses (W) 800 600 400 200 ICeGaN 650 V 3L Inverter (800 V_{DC}) 50 100 150 200 Current (A)

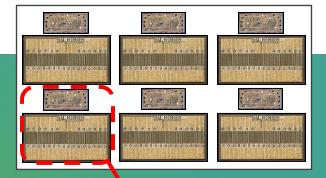
GaN has excellent switching properties, hence the system with GaN is less dependent on switching frequencies than with SiC counterparts

Test conditions: $f_{SW} = 40 \text{ kHz}$ for a 90 kW traction inverter

Increasing the switching frequency can lead to a reduction of the motor iron losses, smaller filters and smaller DC caps

GaN outperforms SiC at high-frequency operation, allowing for smaller total packaging


Simple use of ICeGaN® for power modules


Ease of integration and parallel implementation

ICeGaN 3 phase module composition

with monolithic die

Discrete 3 phase module composition with GaN die and separate interface IC

Single ICeGaN die [1 placement]

One die placement with all the benefits of the ICeGaN interface

Monolithic solution for simpler module construction and parallel use

Simplified BOM for gate driver development

Optimized power density and use of cavity area

Discrete GaN die and Si IC [2 placements]

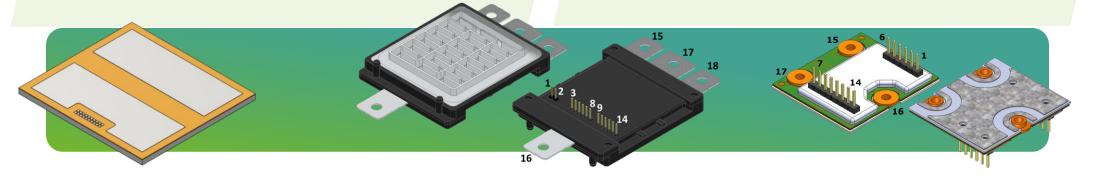
Alternative solutions require an additional interface IC or multiple external components

Additional cost in components and placement

More complex layout and challenging gate loop parasitics

More challenging to use die in parallel

CGD Product Development



Building products to address automotive traction inverters

Evaluation modules for R&D

- Lower Rdson to address high power class application in automotive and industrial verticals
- Metallisation process to facilitate the use in power modules, i.e. top metal dimensions compatible with Cu clips or Al ribbon bond
- KGD die availability

- Modules aid customer / partner development of ICeGaN® in automotive and industrial verticals
- Build proof of concept for multi-level and hybrid approach to high power inverters.
- To better understand the entire application and system use case

Dare to innovate differently

Email: farhan.beg@camgandevices.com Director Application Engineering

Cambridge GaN Devices, Jeffreys Building, Suite 8, Cowley Road, Cambridge CB4 0DS, UK

camgandevices.com | Proprietary and confidential | CGD™ 2025

