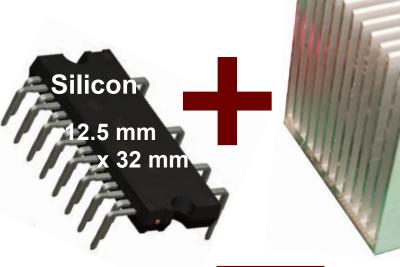


Make the world a better place

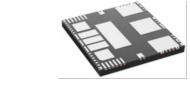
How can we save...

2300 tons aluminum

17500 tons copper

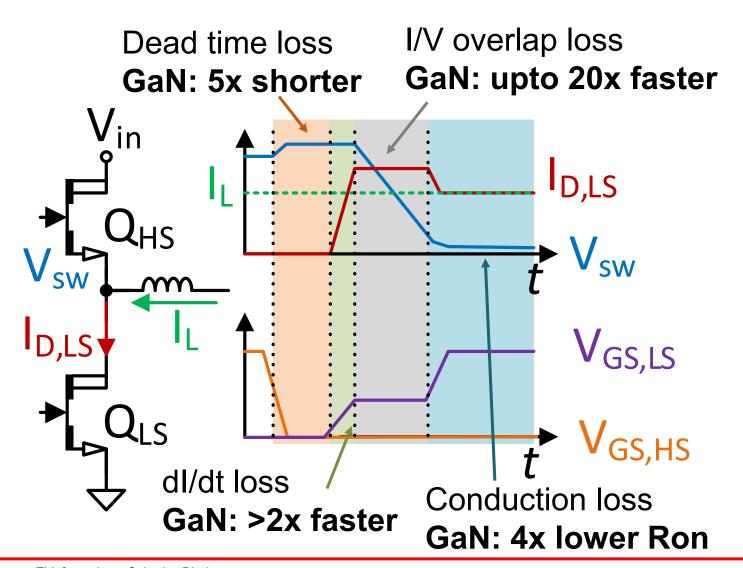

275 GWh energy

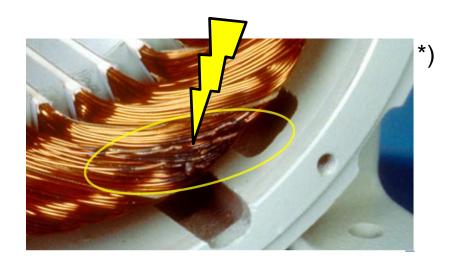
First 3-phase GaN IPM



65% smaller package than sil

3x loss reduction no heat sink needed



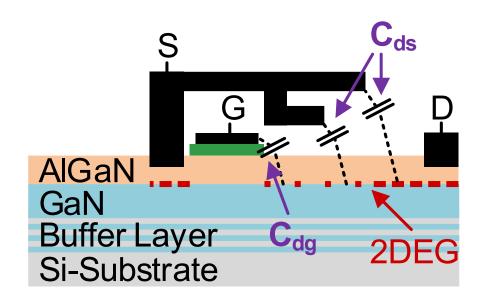


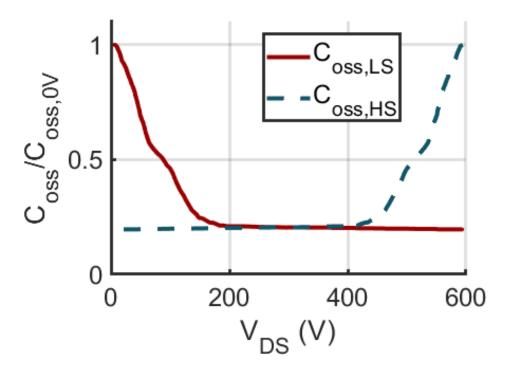
GaN:12 mm x 12 mm

Trade-off: safe operation, EMI, efficiency

Maximize efficiency

Isolation break down due to fast dV/dt


→ Slew rate control required for GaN

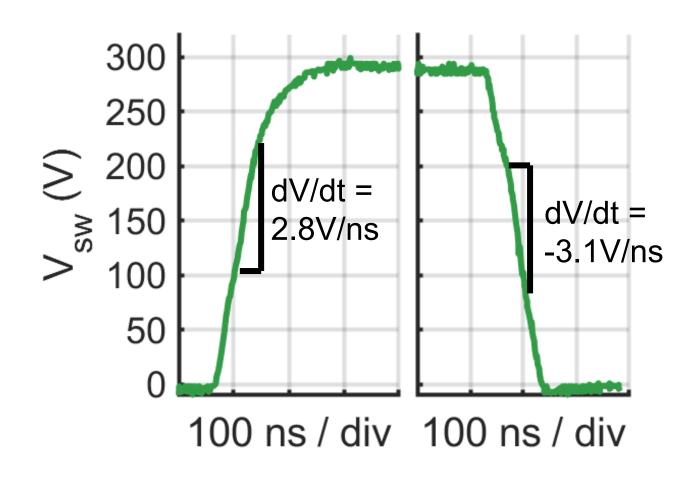

*) Eric Persson, Infineon Technologies, "Gate driver solution for GaN-based low-power motor control applications," in IEEE 2020 Applied Power Electronics Conference Industry Session IS30-4, 2020.

4

Challenges for slew rate control

From: Texas Instruments, LMG2610 Datasheet https://www.ti.com/lit/ ds/symlink/Img2610.p df

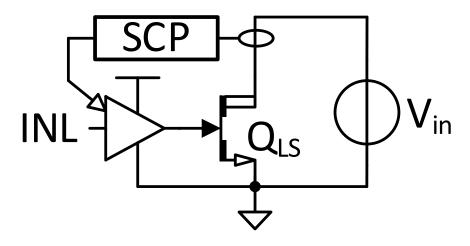
Lateral Device


→ Very non-linear capacitances

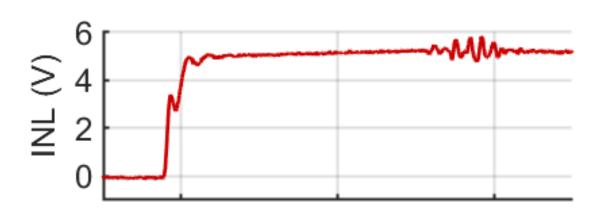
Derived in Kaufmann et al. APEC 2025 https://ieeexplore.ieee.org/document/10977438

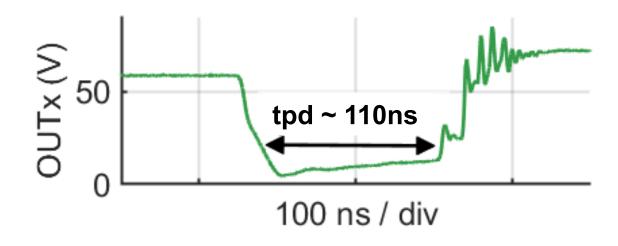
Gate driver: Slew rate control and short delays

- Propagation and turn on delays are proportional to I_{gate}
- Slew rate is propotional to square root of I_{gate}
- → Implement intelligent gate driver for delay minimization and slew rate control

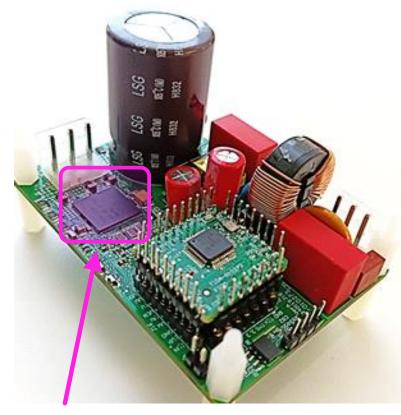

Challenges for short-circuit protection

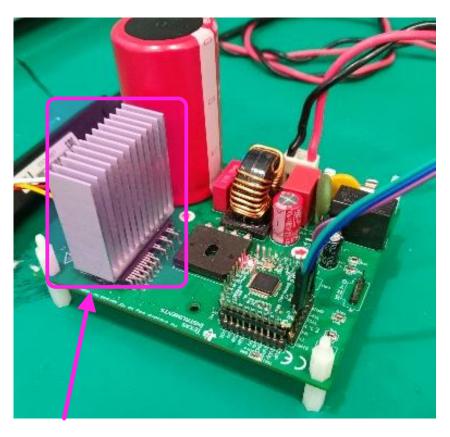
Surface 2D-channel: High power loss in small volume


→ Short circuit protection needs to shut-off GaN HEMT in < ~250ns

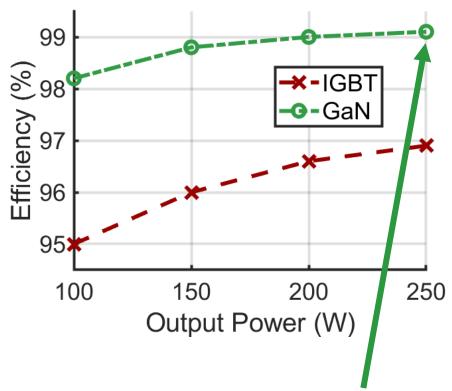

Characterization of short-circuit protection

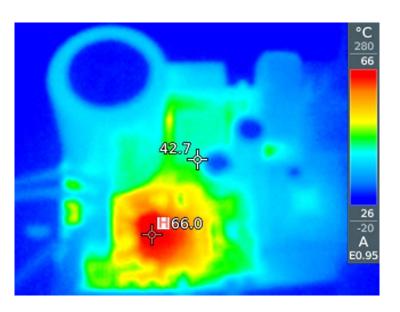
Test: Turn on GaN HEMT in a short circuit Vdrain – Vin

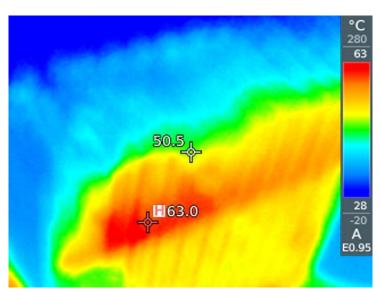

- → Short circuit protection (SCP) shuts off GaN FET within less than 150ns
- → Safe operation is ensured by integrated protection



Testboard GaN IPM vs. IGBT IPM



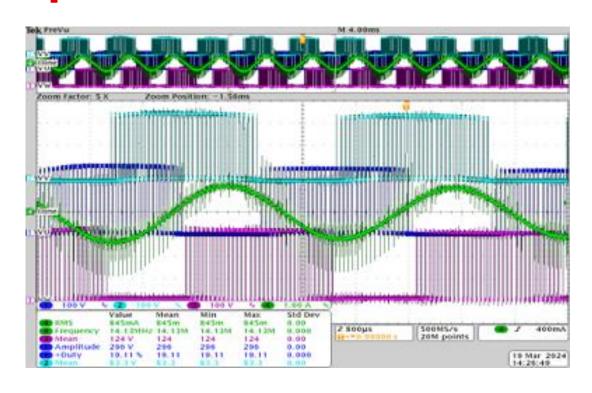

12 * 12mm GaN IPM

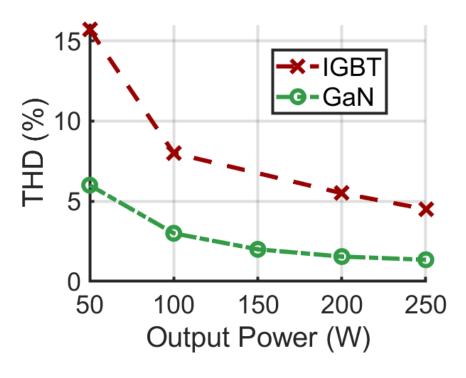

33 * 19mm IGBT IPM + 40 * 40 * 15mm heat sink

Measured efficiency and thermal image

GaN IPM without heat sink: ΔT_{case} - T_{amb} = 41°C

IGBT IPM with heat sink: ΔT_{sink} - $T_{amb} = 38$ °C


GaN: upto 99.1% efficiency


Total loss: GaN 2.25W vs. IGBT 7.5W

→ GaN IPM shows similar temperature increase without heatsink

Toplevel waveforms and total harmonic distortion

GaN IPM without reverse recovery achieves low dead time and wide duty cycle range

→ 3x lower THD of motor current for quiet operation and longevity of motor bearings

Comparison to state-of-the-art

Device, Year Parameter	GaN IPM This Work 2024	Silicon IGBT 2023	Silicon IGBT 2024	Silicon IGBT 2023	Silicon IGBT 2023	Silicon MOSFET 2023	Silicon MOSFET 2024	Silicon MOSFET Half-Bridge 2024
Technology	GaN	IGBT	IGBT	IGBT	IGBT	MOS	MOS	MOS (1/2-H)
Max op. voltage (V)	450	450	450	500	450	500	450	480
Current rating	5A @T _J =125C	4A @TC= 100C	5A @TC= 25C	6A @TC= 25C	5A @TC= 25C	5A	5A @TC= 25C	5.5A
Package (Body size)	12x12 mm (QFN)	36x21mm (DIP)	36.0×14.8 mm (DIP)	32x12.5mm (DIP)	32.8x18.8mm (DIP)	32x12.5mm (DIP)	36.0×14.8 mm (DIP)	(10.8x9.4mm) x3 leaded
Dead time (us)	< 0.2	> 1	1.5	1.5	> 1	1-2	1.5	0.6
Slew rate (V/ns)	5-40	6	~ 2-4	>3	1-3	>3	~ 1-3	2.8-3.4
RDSon (Ω)	0.205	n/a	n/a	n/a	n/a	0.8	0.45	0.83
V _{DS,1A} / V _{CE,sat} (V)	0.205	1.6	1.75	1.6	1.85	0.8	0.45	0.83
Switching Energy 1 cycle, 6 transistors, no reverse recovery (uJ)	50	1170	n/a	870	n/a	582	n/a	n/a
Rth,JunctionCase (°C /W)	5.5	5.3	3.6 (IGBT) 4.2 (Diode)	10 (IGBT) 15 (Diode)	5.4	9.2	3.6	3
Rth,JunctionAmbient (°C /W)	21.2	n/a	25 (IGBT) 29 (Diode)	n/a	n/a	n/a	25	53
OC/SC protection	400ns latch 1-2us comp w/50u retry	Comparator w/ 40 us retry	Comp with 10ms retry	Integrated comparator	Integrated comparator (20us)	Integrated comparator	Comp with 10ms retry	CBC CL, DC bus UV/OV, dual OT
Dead time interlock	adaptive	Yes	No	Yes	No	Yes	No	Yes

