Powering the Future: ICeGaN® 's role in redefining Power Supply Performance for Next Gen Data Centres Farhan Beg, Director of Application Engineering, Cambridge GaN Devices

GaN

Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

Cambridge GaN Devices at a Glance

The Fast-paced Scaleup Making Green Electronics Possible

Property of Cambridge GaN Devices Ltd.

Data Centre Industry Trends

Towards Enhanced Efficiency and Performance

(Agile scalable infrastructure					
	 Demand for expanding server infrastructure 	 Modular architecture for easy, quick integration and expansion 				
	High-density computing			Sustainability and energy efficiency		
	Need for increased computing power	 Increase in power density demands More power per blade & rack 		 Strong focus on sustainability Clean energy adoption 		
· 举	Advanced cooling technologies	5	/	Efficiency improvement		
	• Convergence of air and liquid cooling	 Liquid cooling, particularly for high-density GPU & NPU applications 				
				campandevices com		

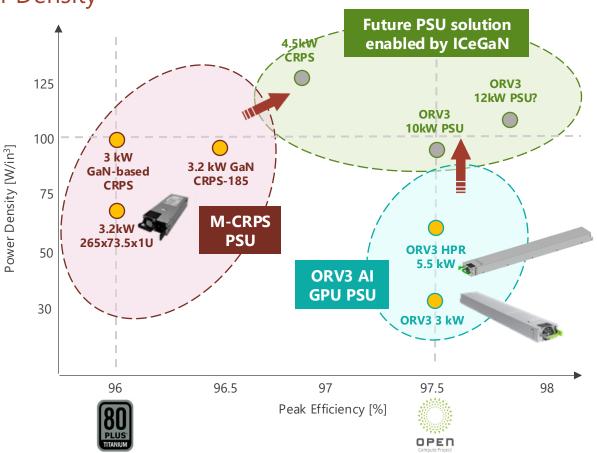
Data Centre Design Trends

Be Ready for the Next-Gen Data Centre Power Demands

Power Trends

- Higher power per rack
- Higher peak load profile
- More demanding efficiency and current THD and PF specification
- Pushing for higher PSU power density
- Transition to liquid/hybrid cooling

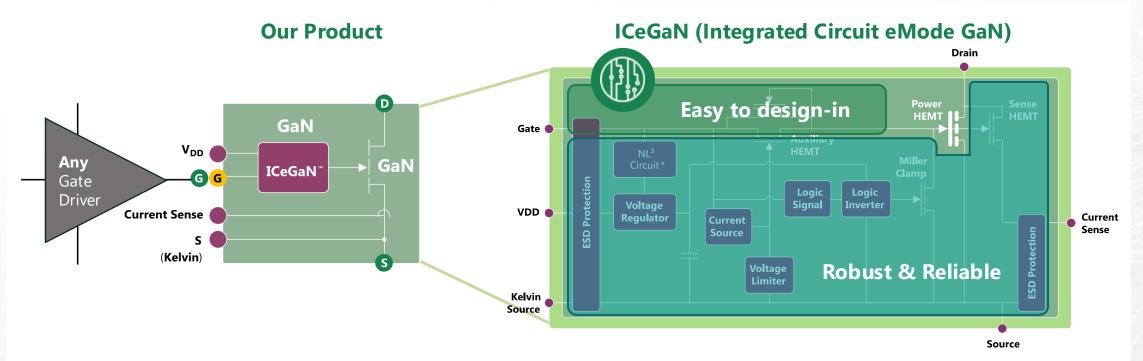
New design challenges for PSU


- Size reduction while meeting higher efficiency and holdup specification – trade off between Power density vs Electrical Performance
- AC Loss, Pulse load and PSU-BBU transition
- New control method and topology to improve light load current THD and PF
- Thermal management

ICeGaN[®] in Data Centres

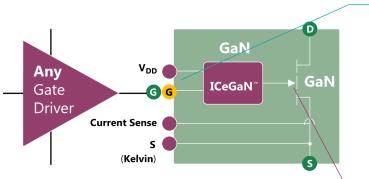
Solution to the Challenge of Efficiency vs Power Density

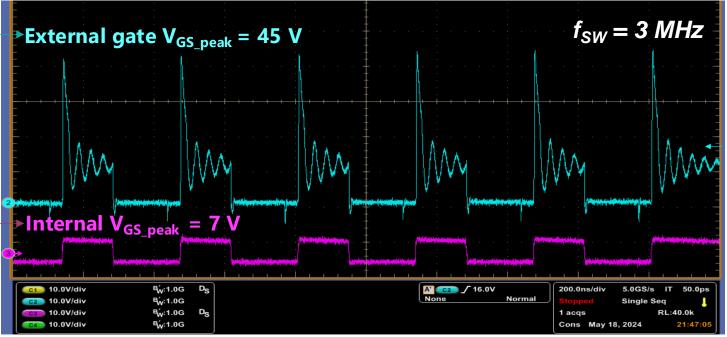
- Al demands higher efficiency and rack power density
 - **15** kW/rack today, >**120** kW/rack by 2030
 - ORV3 HPR 5.5 kW spec has reached 50 W/in³ and 97.5% peak efficiency
 - CRPS PSU has already reached 100 W/in³
 - Next generation OCP target 98% efficiency and 8-10 kW per PSU
- However, current solution has reached its limit!
 - Design trade-off
 - Higher density or efficiency, but not both



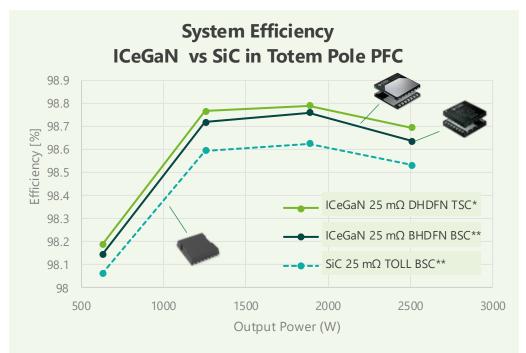
ICeGaN can push the design boundary to the next level and enable future OCP solutions - 98% efficiency & >100 W/in³

ICeGaN[®] Power IC


All-In-One Monolithic GaN Chip

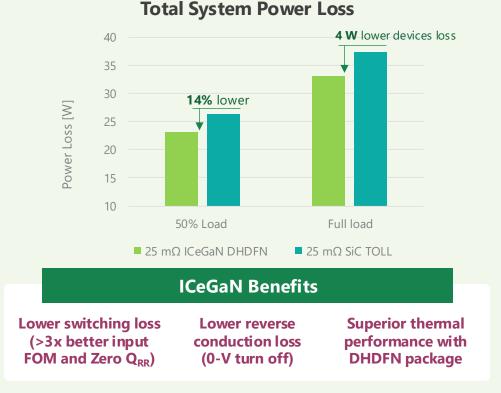

- Increased V_{th} and maximum gate voltage compatible with MOSFET and IGBT Drivers (12 & 15 V)
- Miller Clamp enables very high dv/dt and 0 V turn-off
- Improved robustness 2 kV ESD all pins, high transient rating on the gate
- Withstands >80 V dynamic voltage overshoots at the Gate

ICeGaN[®]: Robustness **Peliability**


- ICeGaN can safely operate with extreme high gate external ringing
- ICeGaN internal HEMT gate is clamped to safe operating voltage, delivering very smooth and stable operation
- ICeGaN can kill induced oscillations even at 3 MHz

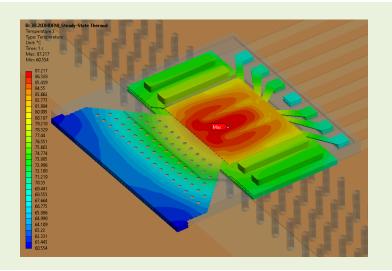
External circuit designed, built and tested by VIRGINIA

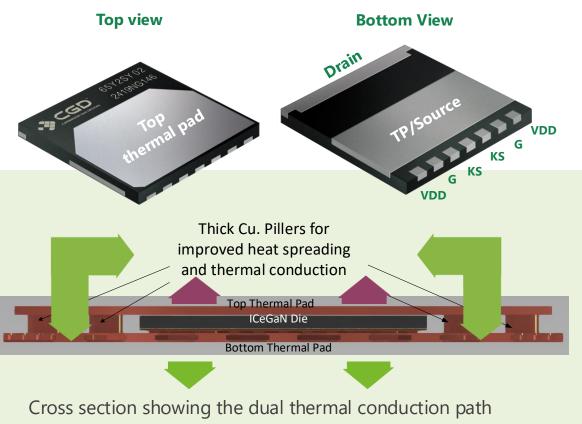
ICeGaN takes GaN to the next level of reliability and performance


ICeGaN[®] Efficiency Advantage ICeGaN P2 Series vs SiC in High-power Packages

Test Conditions: V_{IN} = 230 V_{AC} , V_{OUT} = 400 V_{DC} , f_{SW} = 65 kHz, P_{OUT} = 2.5 kW

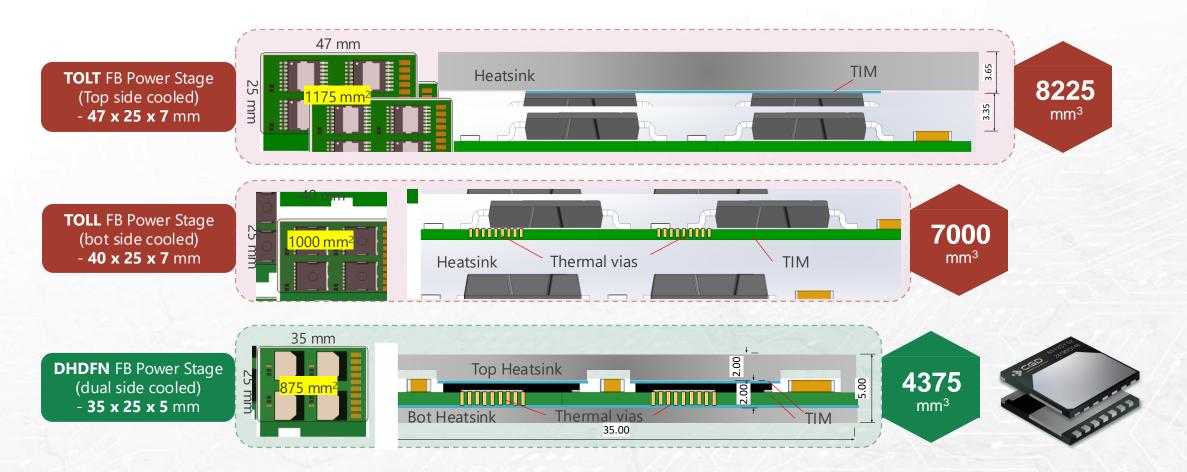
*TSC = Top-Side Cooled configuration. **BSC = Bottom-Side Cooled configuration.



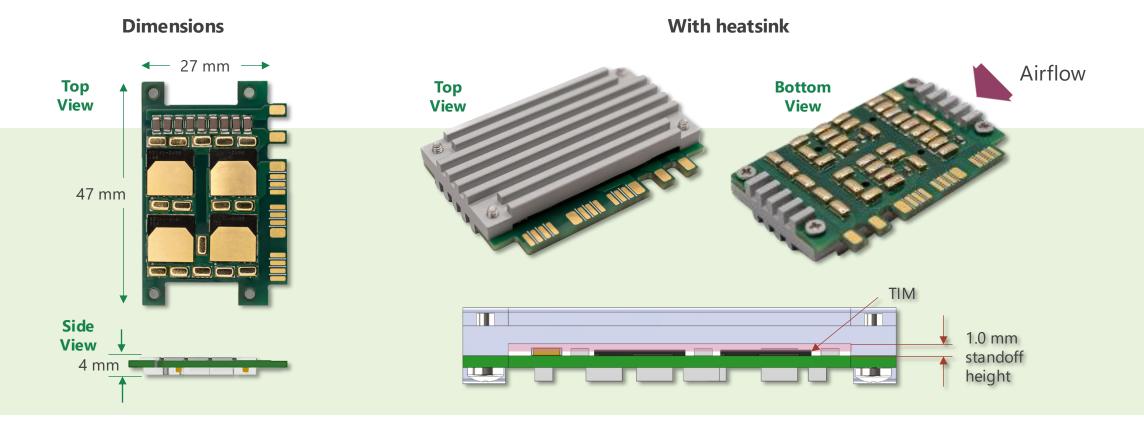

ICeGaN demonstrates higher efficiency even at low switching frequency

ICeGaN[®] Thermal Benefits Dual-side Cooled DHDFN Package

- Compact size 10 x 10 mm with low thermal resistance
- True dual-side cooling capability with added Cu pillars for improved heat spreading and thermal conduction
- Low inductance with no wirebond for high-speed switching
- Wettable flank for automatic optical inspection
- Dual gate for flexible layout and easy paralleling



Smaller size with ICeGaN[®] in DHDFN

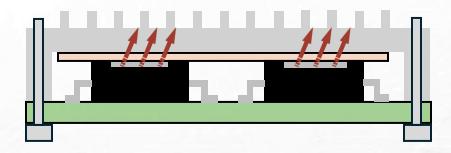


CGD's DHDFN achieves ~2x smaller power stage vs TOLT

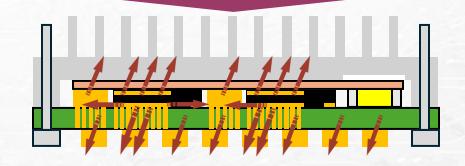
DHDFN Full-Bridge Design Example

Compact Dual-side Cooled Power Stage for 1U High-density PSU Design

ICeGaN[®] in DHDFN enables compact design to aim for high power densities


Property of Cambridge GaN Devices Ltd.

Advantages of DHDFN Package Over TOLT



More Surface Area Under the Same Volume

Typical cooling design using TOLT

Recommended cooling design using DHDFN

Advantages of DHDFN over TOLT:

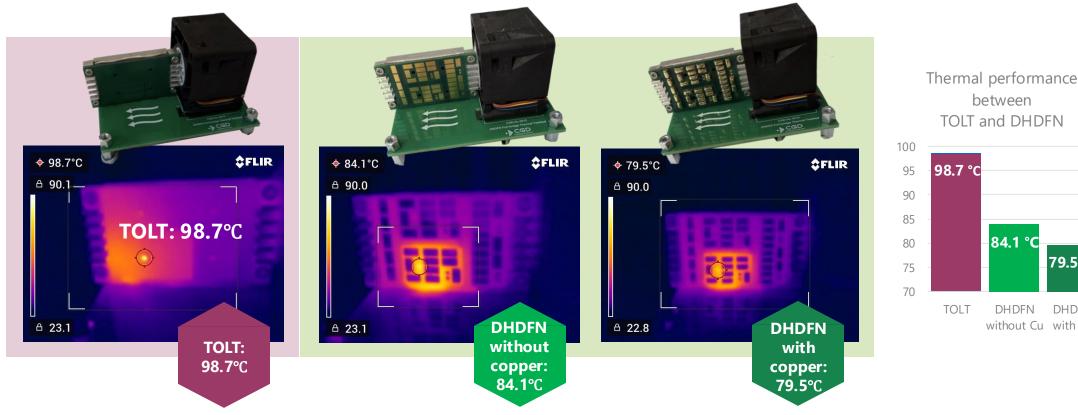
Double-sided cooling:

Allows efficient heat dissipation from both the top and bottom sides.

3.5x thinner package:

Enables the use of longer heatsink fins, resulting in lower thermal resistance.

40% footprint reduction:


Provides extra space for decoupling capacitors, reduces the power loop, and improves EMI performance.

DHDFN outperforms TOLT in full-bridge topology both thermally and in EMI performance

Advantages of DHDFN Package Over TOLT

Test results – 15 W Loss At a Single Device

Test conditions: 15 W loss at a single device, 15,900 RPM fan speed, 23 °C T_{amb}

DHDFN runs 20 °C cooler than TOLT under the same box volume

between

84.1 °C

DHDFN

without Cu with Cu

79.5 °C

DHDFN

~20°C

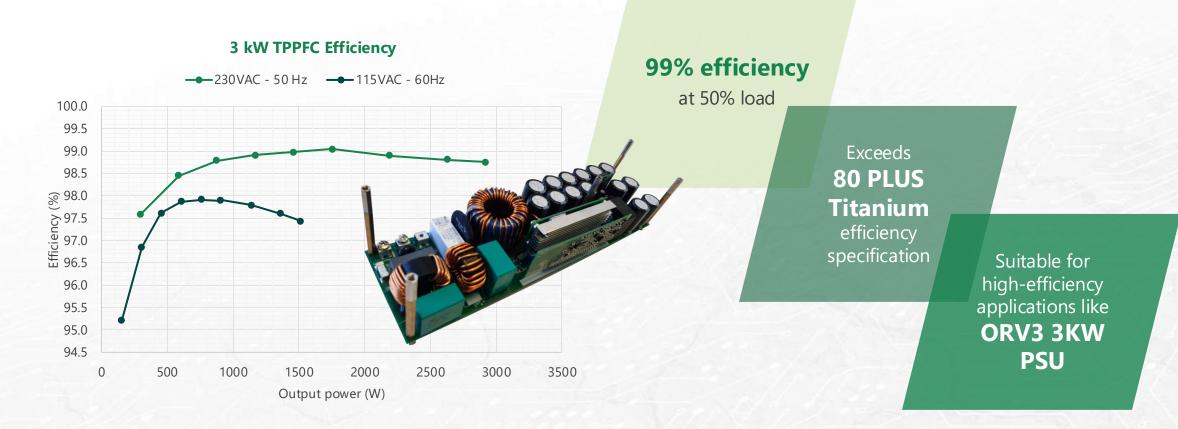
cooler

CGD's 3 kW Totem Pole PFC Evaluation Board

- 3 kW operation at 230 V_{AC} (1.5 kW at 115 V_{AC})
- V_{IN}: 90 -264 V_{AC}; V_{OUT}: 400 V_{DC}
- Switching frequency: 65 kHz
- 2x ICeGaN[®] (650 V, 25 mΩ, DHDFN package) in half-bridge
- Reduced external component count compared to discrete
 eMode GaN

Control card

CGD65D025SP2 high frequency half-bridge daughterboard with heatsink


Auxiliary Supply daughterboard

ICeGaN[®] Meeting Data Centre Demands

CGD's 3 kW Totem Pole PFC Design

ICeGaN can enable future OCP solutions with 98% efficiency & >100 W/in³

Property of Cambridge GaN Devices Ltd.

15

ICeGaN[®] Product Portfolio for Data Centres

PN	R _{DS(on)} typ (mΩ)	Current Rating (A)	Package	Features	Preferred Gate Driver	Status	BHDFN: Bottom-Side Cooled
CGD65C025SP2	25	60	BHDFN-9-1	ICeGaN	Any MOSFET and IGBT driver	Contact factory	Bottom-Side Cooled
CGD65D025SP2	25	60	DHDFN-9-1	ICeGaN Dual gate			
CGD65C055SP2	55	27	BHDFN-9-1	ICeGaN			
CGD65D055SP2	55	27	DHDFN-9-1	lCeGaN Dual gate			

BH = Bottom heat-spreader **DH** = Dual heat-spreader

See product datasheet

Dare to innovate differently

Thank You

