Benefits of 3-level power modules in Automotive traction inverters

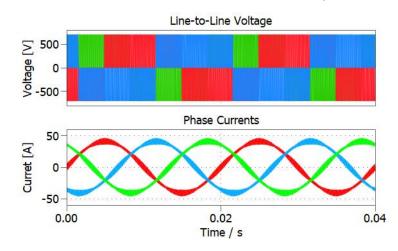
Antonio Poveda Application Engineer Fuji Electric Europe GmbH

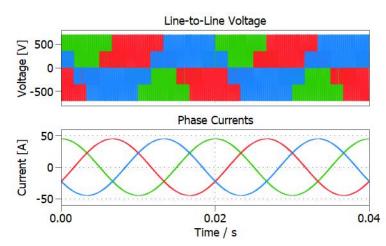
Bodo's Wide Bandgap Event 2025

Making WBG Designs Happen

Table of Contents

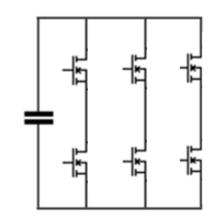
- 1. Limitations of existing 2-level inverters
- 2. Benefits and trade-offs of 3-level inverters
- 3. Fuji Electric's solution
- 4. Evaluation results
- 5. Summary

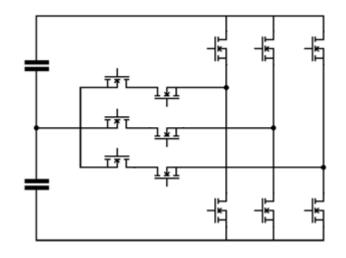

1. Limitations of existing 2-level inverters


- Today's BEVs predominantly use 2-level Voltage Source Inverters for traction, moving from IGBT based inverters to SiC-MOSFET based inverters.
- Inverter efficiency has greatly improved with the use of SiC, but system losses,
 EMI emissions and dV/dt can still be improved.
- PWM harmonics from 2-level inverters add copper, iron (hysteresis and eddy) and rotor stray losses, causing heat in the electric machine which limits the constant output power.
- For most motor types used in traction, PMSM, ASM and even EESM, their efficiency is limited when using 2-level inverters.
- Continuous increase in battery voltage and faster devices increase common mode disturbance and dV/dt, causing insulation and bearing stress.

2. Benefits and trade-offs of 3-level inverters

- 3-level T-type inverters halve device switching voltage per step, enabling lower switching losses or higher switching frequency.
- Their output waveform closer resembles a sinusoidal waveform, lowering THD and current ripple at the electric machine.
- Halving switching voltage lowers dV/dt and common mode voltage, therefore lowering insulation stress and EMI emissions.
- Lower current ripple on the machine side contributes to lower hysteresis, eddy currents and core losses, among others.

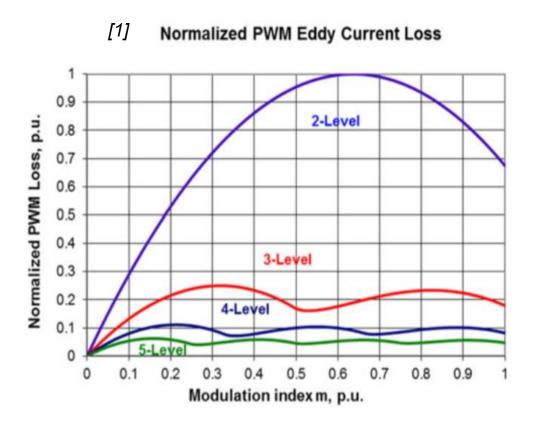


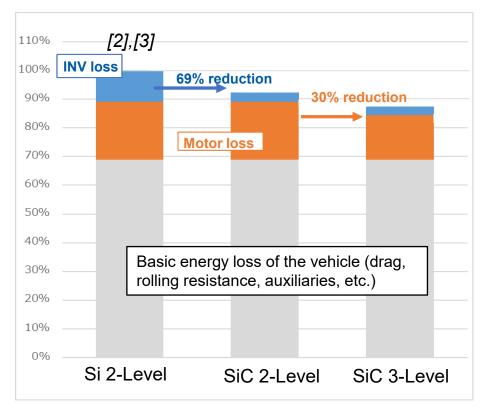


2. Benefits and trade-offs of 3-level inverters

These improvements come with trade-offs, but the advantages can be worth it in the right applications.


- Extra devices per phase: 3-level T-type inverters require 2 extra devices and their corresponding driving control per phase, making the inverter more expensive than the respective 2-level.
- Larger conduction losses: Having extra series devices slightly increases the conduction path losses, although partially offset by SiC's low Rds on.
- Higher control complexity: The balance of each dc-link capacitor and the extra devices make 3-level inverters more difficult to control.

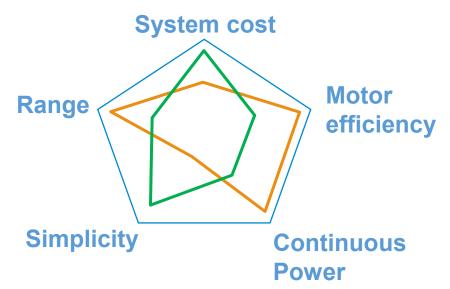



3. Fuji Electric's solution

- Fuji Electric has developed a convenient, state of the art 3-Level T-type SiC module for 800 V battery systems, the M1206.
- Up to 300 kW power per module.
- Low stray inductance.
- Laser welding main terminals.
- Press-fit pin auxiliary terminals.
- Molded package with revolutionary 3D wiring internal structure.
- AQG324 approved.
- Flexible design (Future plan):
 - Half-bridge design with customizable adapter frame.
 - Available with or without water cooler.
 - Al or Cu coolers, pin-fin or closed water jacket.

4. Evaluation results

Real world tests show the previously studied loss reduction clearly. For reference, the change from Si to SiC gave BEV an approximate increase in efficiency by 7%. A similar result is expected with the change from 2 to 3-level inverters.



5. Summary

- The change from Si to SiC brought great improvements to powertrain efficiency. Further improvements can be achieved by using 3-level topology.
- Lower voltage steps allow for lower losses and higher efficiency at the electrical machine level, allowing for a higher constant power output.
- Fuji's M1206 SiC 3-Level T-type module offers extremely high power density with low leakage inductance.

Market ready in 2026.

3-Level inverter2-Level inverter

THANK YOU

Antonio Poveda
Application Engineer Automotive – Semiconductor Technical
Division
Power Semiconductor Division
antonio.poveda@fujielectric-europe.com

Annex

- [1] A.Ruderman, Effect on Multilevel Inverter Supply on Core Losses in Magnetic Materials and Electrical Machines, IEEE 2015
- [2] A. Nisch et al,"Effects of a SiC TMOSFET tractions inverters on the electric vehicle drivetrain", Proc. Int. Exhib. Conf. Power Electron, Intell. Motion Renewable Energy and Energy Manage., pp. 95-102,Nuremberg,Germany(2018)
- [3] P. Panchal et al,"An Innovative 3-level Solution for Automotive Applications:eMPack", Proc. Int. Exhib. Conf. Power Electron, Intell. Motion Renewable Energy and Energy Manage., pp. 315-321, Nuremberg, Germany (2024)