What it takes to make it real : Opportunities and challenges moving to 1500V architectures

> *Guy Moxey VP Power Development Wolfspeed*

> > Sic

Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

1500V DC-LINK ARCHITECTURE IS ESSENTIAL TO SOLVE THE NEED FOR MORE POWER

"The transition to renewable energy sources, coupled with economic growth, will cause electricity demand to solar - increasing by 40% from 2020 to 2030, and doubling by 2050"

Source: McKinsey

© 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

1500V SYSTEMS HAVE BECOME THE DESIGN STANDARD FOR RENEWABLES

Benefits

- Reduced system and installation cost
- Infrastructure savings
- End-to-end efficiency improvements
- Less PV strings and AC/DC-cabling

Challenges

- Topology selection and trade-offs
- Semiconductor selection at required
 Vds and performance

350KW 1500V MPPT STAGE: SILICON CARBIDE 2L VS SILICON CARBIDE 3L

3-level Boost Converter

	2-level Silicon Carbide at 2kV Discrete	2-level Silicon Carbide at 2.3kV Module	3-level Silicon Carbide	All 3-level silicon IGBT Module
30KW/ CHANNEL	TO247 FETTO247 diode	 2.3kV Wolfpack booster 	TO247 FETTO247 diode	• IGBT Module
SWITCHING FREQUENCY	• 32kHz	• 32KHz	• 48kHz	• 18kHz
POWER DENSITY	• 1.25X	• 1.4X	• 1.1X	• 1X
EFFICIENCY	• 99.6%	• 99.65%	• 99.38%	• 99.1%
TOTAL POWER BOM COST	• 82%	• 104%	• 75%	• 100%
ADVANTAGES	Fewer devices, high efficiency, better FIT rate; Simple control		 Half of voltage rating devices, Lower switching loss High frequency, High power density, Lower cost 	
DISADVANTAGES	 Large voltage stress, High switching loss Restricted switching fq, Large current ripple 		More power device/More device lossLower efficiency, Complex control circuits	

4

1500 V POWER CONVERSION SYSTEM INVERTERS: 2-LEVEL OR 3-LEVEL

Three ways to use silicon carbide to improve efficiency and reduce system losses

2300V ENABLES SIMPLE 2-LEVEL SYSTEM, HIGHER FREQUENCY, LOWER LOSSES

DC-AC mode- 250kw with liquid cooling design

Devices (2.3KV SIC Module):

CAB5R0A23GM4*3/CAB7R5A23GM4*6

Devices (IGBT Module): F3L225R12W3H3*6

6

ENABLING RELIABLE GRID-SCALE ENERGY STORAGE

- Grid-ready flexible inverter covering a wide range of power and voltage levels delivering industryleading efficiency and power density
- Low maintenance and service needs
- Easily mass produced to rapidly deploy a solution on a global scale

"By utilizing silicon carbide in our revolutionary 'M' inverter, EPC Power is creating a paradigm shift in technology and energy capacity"

– Devin Dilley, Chief Product Officer at EPC Power

© 2024 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc.

WOLFSPEED SILICON CARBIDE POWER SCALABILITY FOR SOLAR & ENERGY STORAGE

Product for all power scaling

Discrete Advantages:

- Maximize design flexibility
- Minimize total BOM cost

Module Advantages:

- Maximize power density
- Simplify layout and assembly
- Minimize assembly costs & component counts
- The industries widest full Silicon Carbide module portfolio
- Industry standard & Silicon Carbide optimized footprints

