Silicon Carbide JFETs enable breakthroughs of high-voltage solid state power distribution

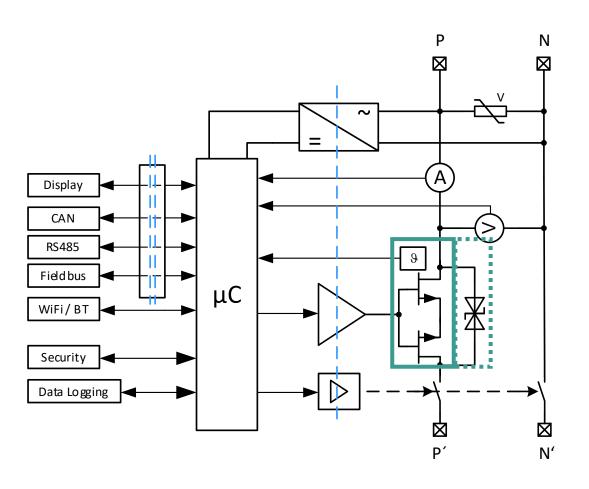
Leo Aichriedler
Distinguished Engineer Application Marketing
Infineon Technologies Austria AG

Bodo's
Wide Bandgap
Event 2025
Making WBG Designs Happen

Solid State Power Distribution

Why to change a 100-year old, proven electro-mechanical concept

- Reduction of Fault isolation delay from >10 ms to <5 μs
 - Minimal current overshoot
 - Reduced Distortion in the distribution grid
 - Selectivity vs. Electronic Sources
- Smart Protection Mechanisms
 - Auto-Retry / Failure Recovery
 - Smart Inrush Handling
 - Self Diagnostic
- Arc-Free, Wear-free Actuation and Protection
 - Reduced Maintenance
 - Installation Space (IT environment)
 - Smart Load Control
- AC and DC compatible
- Size / Ampacity
- Power Dissipation
- Cost (CAPEX)



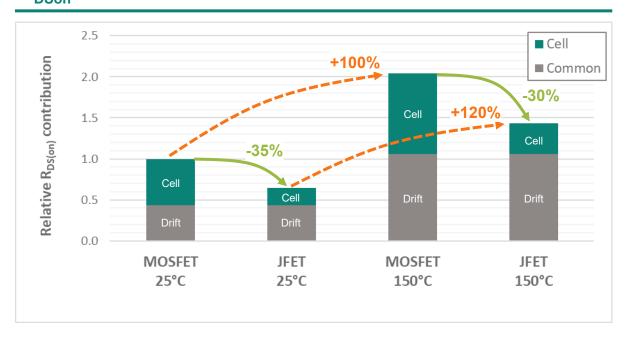
Enabled by Power Semiconductor Solutions

Solid State Circuit Breakers from a System Perspective

Power Stage as critical building block

SSCB Requirement

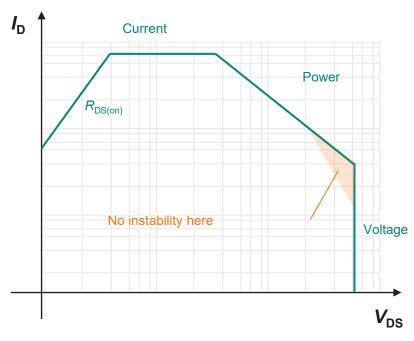
- Very low Voltage drop @ rated current
- Overload Capability
- High Current Switching Capability
- Interplay with Clamping Device
- Overvoltage / Overcurrent Robustness
- Power Temperature Cycle Robustness
- Miniature Solution Size
- Lifetime equivalent to EM solution


Example: 63A/800 Vdc

- 150 mV/Pole 2.3 m Ω total
- $-3x I_{nom} *2s$
- $I_{SD} = 1 kA$
- TVS
- OVC III
- 500kc @ 125 °C
- Equivalent to 63A MCB
- >20 years * 24/7

JFET: Advancements in Ron*A and FBSOA

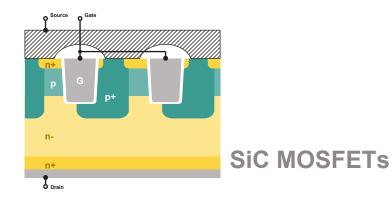
R_{DSon} Contribution: 1.2kV CoolSiC™ MOSFET vs. JFET

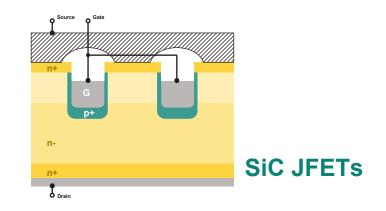


Best-in-Class RDSon Ratings:

2.3m Ω @ 1200V V_{BDss}

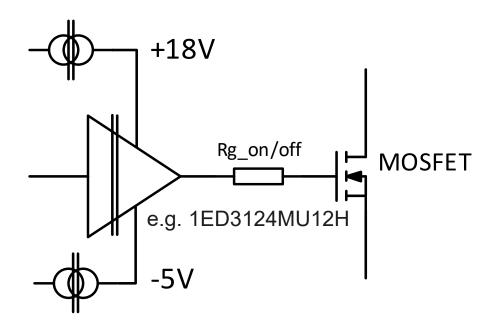
1.5m Ω @ 750V V_{BDss}

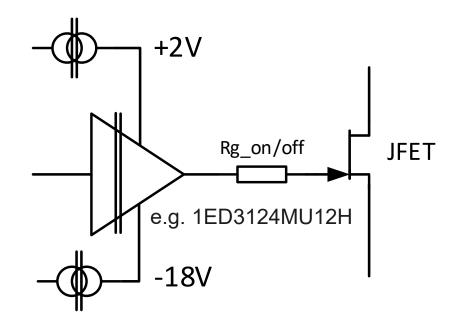

JFET FBSOA: ID vs. VDS



- Thermal Stability under all operating conditions
 - No hot-spotting during overload pulses
 - Linear mode capable
 - Stable operation in "avalanche"

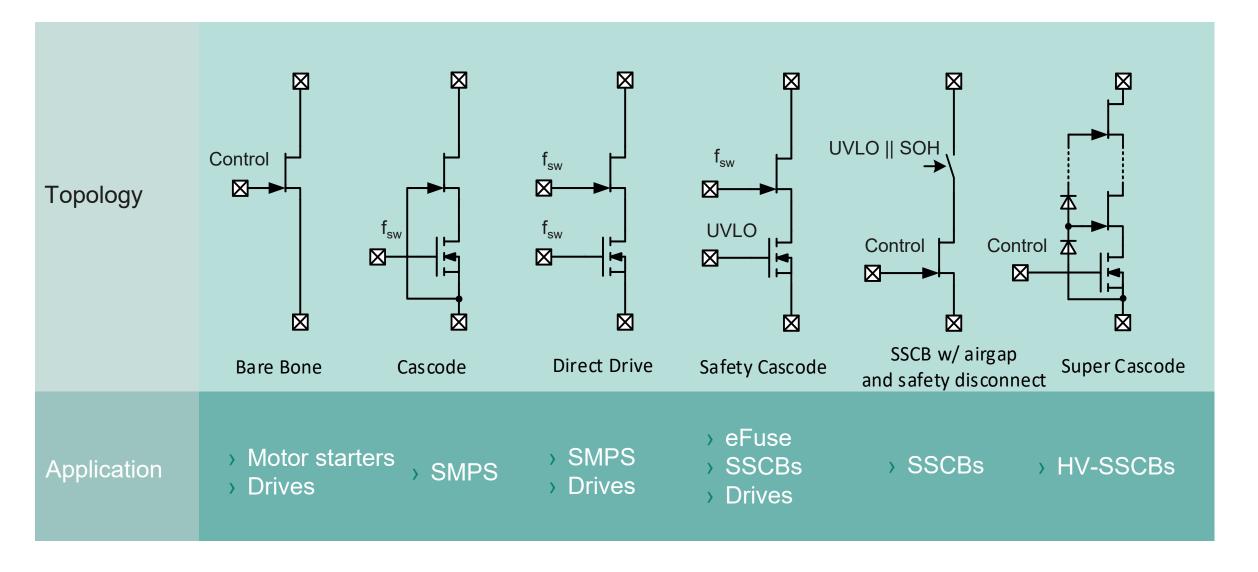
Technology differentiation – CoolSiC™ JFET vs. MOSFETs




Construction	Channel conduction, normally off Fully isolated gate Optimized for minimum gate feedback	Bulk conduction, normally on Non isolated gate Optimized for $R_{DS(on)}$ and robustness
FOMs	Relatively high(er) R _{DS(on)} Lower temperature coefficient	Lowest possible R _{DS(on)} per device Higher temperature coefficient
Benefits	Simplified control, high switching speed Compatibility to legacy circuits	Maximum power density ** Active clamping ** Linear mode operation **

Driving a CoolSiC™ JFET is easy...

Example: Isolated Gate Drive Scheme



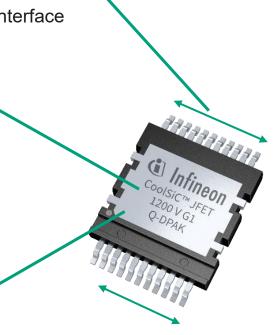
- Exchange Polarity of Supply voltages: +18V → -18V; -5V → +2V
- Adoption of Rg_on and Rg_off values
- Use of same (basic) Gate Driver

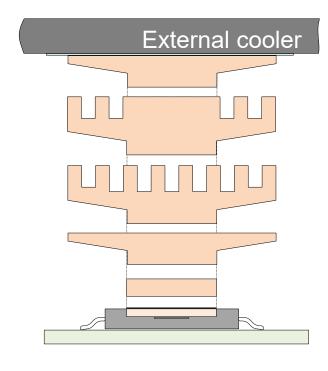
Drive modes and application mapping for JFET/JFET Cascodes

Package Optimization for full application performance

Q-DPAK enables efficient system integration into SSCB assemblies

Large Drain and Source interface area


- Minimize Losses
- Reduced current density at the interface


Optimized internal construction

- High current interfaces
- Diffusion soldering
- Large die area & internal paralleling

Top-Side Cooling & large heatslug

- Lowest possible R_{th}
- Directly connected, local C_{th}
- Application-adjustable C_{th}

- Directly attached TSC cooler enables flexibility
 - Adjust i²t capability via C_{th} extension
 - Optimize R_{th}
 - Reduce Thermal cycling stress

Summary

- Solid-State Power Distribution is a new emerging application field with special requirements to the applied semiconductors
 - Ultra-Low RDSon of HV Power Transistors
 - Robustness and Reliability under heavily exposed conditions
- The CoolSiC™ JFET enables high performance SSCB designs by
 - Groundbreaking low R_{DSon} values
 - Simplified device paralleling
 - High Current Avalanche Ratings to minimize the effort in clamping solutions
- The Q-DPAK Package is optimally suited for the implementation of high current SSCBs
 - Large routing interface area on both, Drain and Source contacts
 - Large thermal interface area
 - User-extendable thermal capacitance for overload capability.

