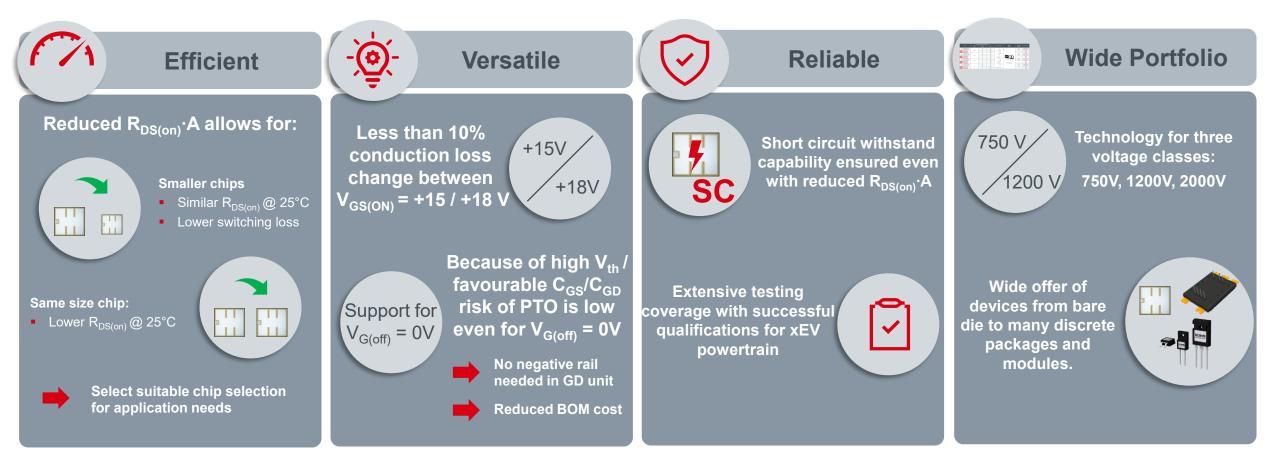


Director Application Engineering ROHM Semiconductor GmbH

Bodo's
Wide Bandgap
Event 2025

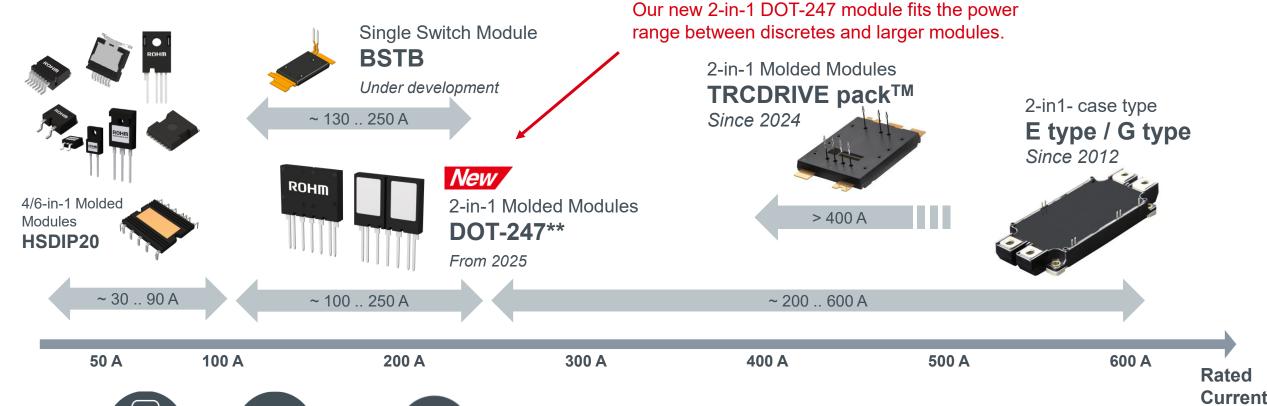
Making WBC Designs W

Making WBG Designs Happen


- 1. Introduction Gen 4 SiC MOSFETs / Package vs. Power Range
- 2. Features and application benefits of DOT package
- 3. Target applications
- 4. Conclusions

4th Generation SiC MOSFETs

Wide choice of performant and reliable devices available for many applications!



3

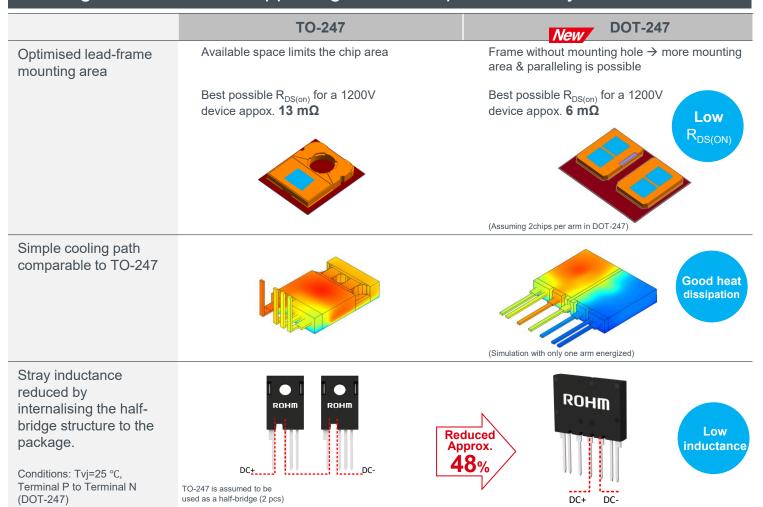
SiC Power Packages (750 / 1200V)

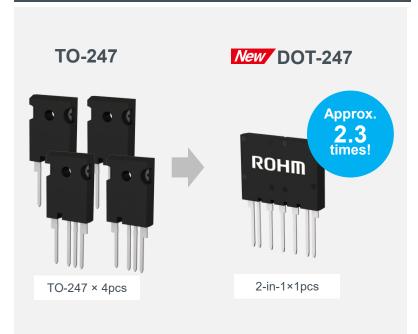
DC charger

OBC/DCDC

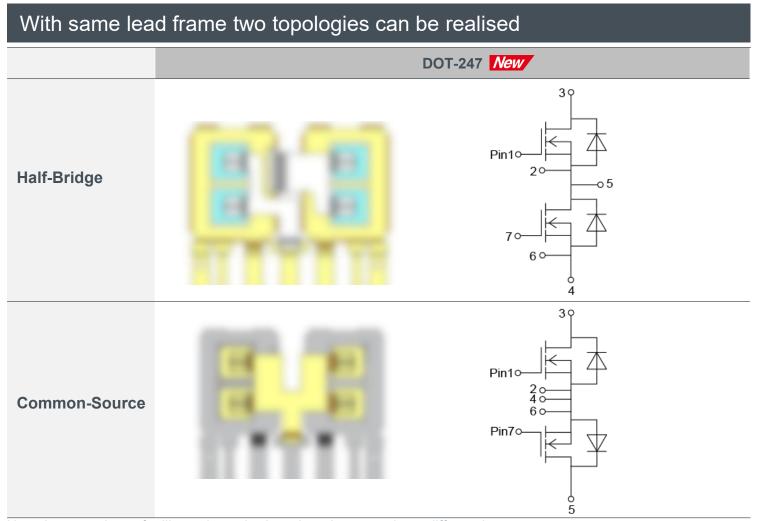
Server PSU

traction inverter


- 1. Introduction Gen 4 SiC MOSFETs / Package vs. Power Range
- 2. Features and application benefits of DOT package
- 3. Target applications
- 4. Conclusions



Package level features supporting increased power density


Significant power density improvement

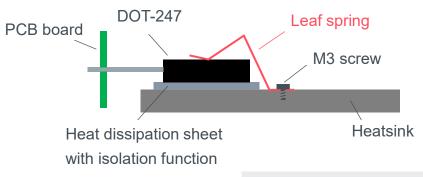
In a half-bridge circuit, DOT-247 delivers the same power using only half the molding volume!

Additional benefit: DOT-247 supports two topologies

DOT-247 can support a wide variety of topologies!

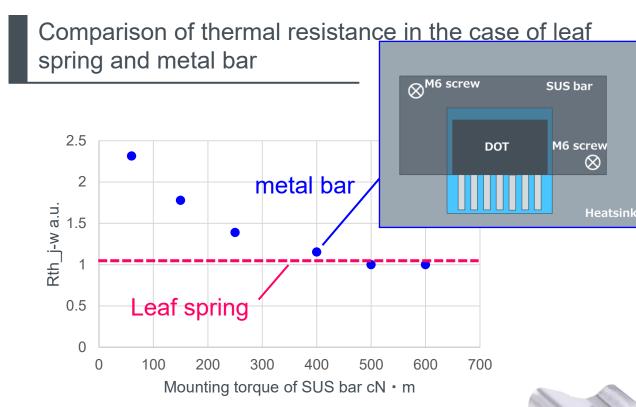
Cu-Clip technology to support high power cycling requirements

Note: Layouts shown for illustration only. Actual products may have different layouts



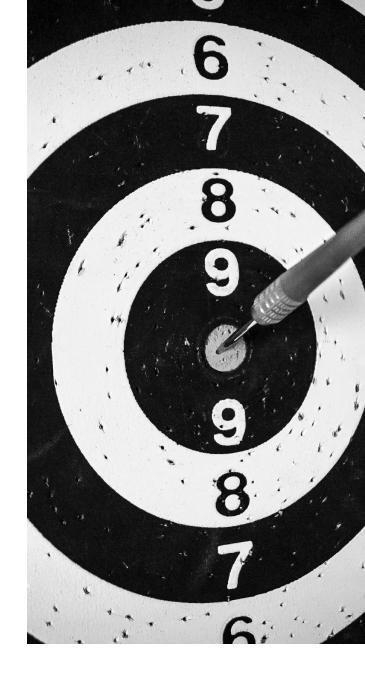
Evaluations show that mounting with a standard leaf spring results in good thermal performance

Assembly method with leaf spring


Side view

Top view

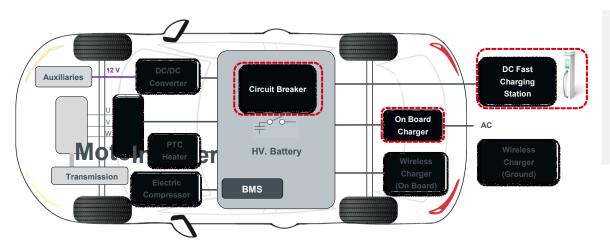
Center of the package is clamped with 1 leaf spring.


Measurement setup condition

Leaf spring: Fischer Elektronik THFM1

Mounting torque of leaf spring: M3, 60cN • m

Heat dissipation sheet: Denka BFG20A (5 W/mK, 0.2 mm)


- 1. Introduction Gen 4 SiC MOSFETs / Package vs. Power Range
- 2. Features and application benefits of DOT package
- **3.** Target applications
- 4. Conclusions

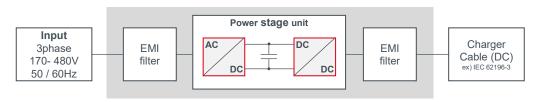
DOT-247 target applications

ROHM

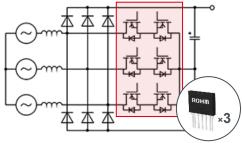
Automotive xEV applications

- Battery switch in xEV
- On Board Charger (OBC)
- DC Fast Charging Station

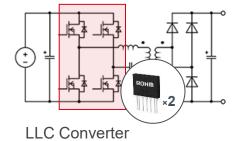
Industrial applications



- UPS / ESS
- PV Inverter
- FA
- EV Charger Station
- Server/Telecom PSU
- SSCB



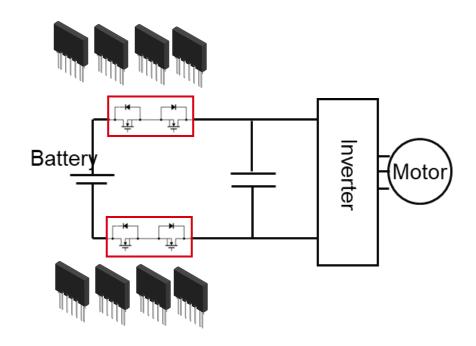
EV Charging Station


AC-DC

3-phase 3-level PFC

- DOT 247 modules support topologies common to power modules in DC chargers
- Simpler design than using many discretes, more cost effective than some module solutions.

DC-DC

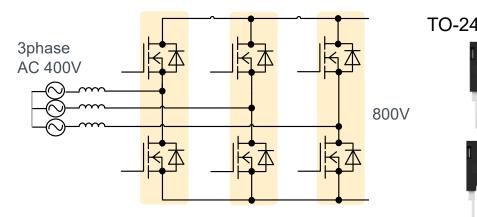


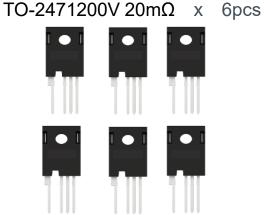
Dual Active

Bridge (DAB) Converter

Battery Switch / SSCB

Common source type is applicable as battery switch in xEV and a possible building block for solid state circuit breaker

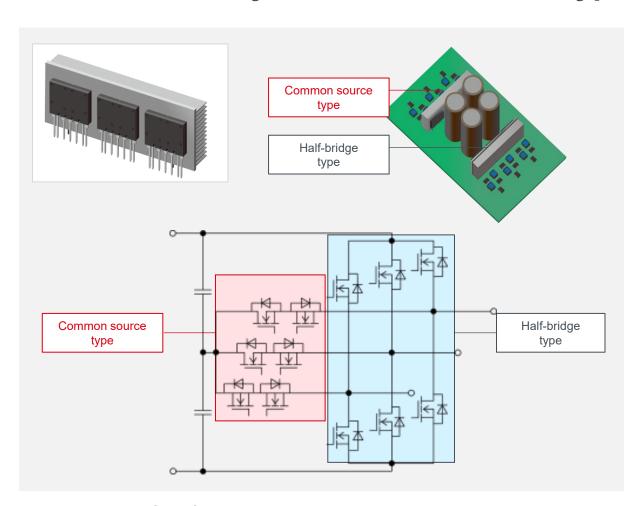



Example: 750V 6.5 mohm 4pcs in parallel for 300 .. 350 A battery relay

3phase Full Bridge PFC for OBC or other AC/DC systems

Example: 11kW-3 phase Full Bridge PFC V_{output} = 800V

improvement


DOT-247 1200V 18mohm x 3pcs

	P _{out}	ld (each phase)	recommend	3 phase Full bridge PFC BOM
11 kW / 800V	44 1307	Id=~54A	(TO-2471200V 20m Ω x 1para)x2pcs/each phase	6pcs
	11 kW		DOT-247 1200V 18mΩ/each phase	3pcs Example for replacement
	00 1444	Id=~108A	(TO-2471200V 19m Ω x 2para)x2pcs/each phase	12pcs From TO-247 to DOT-247
	22 kW		DOT-247 1200V 9mΩ/each phase	3pcs

1200V 9 / 18mohm DOT-247 is better choice for >= 11kW 3phase Full Bridge PFC

- Easy T-type NPC configuration thanks to the common-source topology.
- Mid-power converters can be realized thanks to lower R_{DS} and R_{th i-c}.

Application using T-type NPC Topology

- UPS / ESS
- PV Inverter
- FA
- EV Charger Station
- Server / Telecom PSU

13

Benefits of DOT-247

- Building blocks readily available
- Low $R_{DS(on)}$ components enable design without paralleling
- Expecting significant volume savings over traditional discrete solution

Product Lineup and Development Schedule (4th Gen SiC MOSFET)

	Absolute Maximum Ratings (Tj= 25°C)				Dockovo	AEC 0404	
Part No.	V _{DSS} [V]	${f R_{DS(on)}}\ [m\Omega]$	I _D [A]	Circuit Diagram	Package [mm]	AEC-Q101 Qualified**	SPICE Model
☆ SCZ4018KTAHR	1200	18	76	Pin10 20 05 5 60 4 Half bridge	DOT-247-7L 31.5×41.0×5.0	YES	After 2025/10
☆ SCZ4009KTAHR		9	149			YES	After 2025/10
New SCZ4011KTA		11	106			_	<u>YES</u>
New SCZ4006KTA		6	209			_	<u>YES</u>
☆ SCZ4013DTAHR	750	13	96			YES	After 2025/10
☆ SCZ4007DTAHR		6.5	187			YES	After 2025/10
New SCZ4008DTA		8	134			_	<u>YES</u>
New SCZ4004DTA		4	251			_	<u>YES</u>
☆ SCZ4018KTBHR	1200	18	76	Pin10 2 4 6 6 0 Pin70 5 5 Common source		YES	After 2025/10
☆ SCZ4009KTBHR		9	149			YES	After 2025/10
New SCZ4011KTB		11	106			_	<u>YES</u>
New SCZ4006KTB		6	209			_	<u>YES</u>
☆ SCZ4013DTBHR	750	13	96			YES	After 2025/10
☆ SCZ4007DTBHR		6.5	187			YES	After 2025/10
New SCZ4008DTB		8	134			_	<u>YES</u>
New SCZ4004DTB		4	251			_	<u>YES</u>

☆Under development

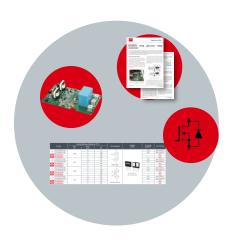
^{**}AEC stands for Automotive Electronics Council, a reliability standard for automotive electronic components established by major automotive manufacturers and US electronic component makers.

AEC-Q101 is a standard that specifically applies to discrete semiconductor products (i.e. transistors, diodes).

- 1. Introduction Gen 4 SiC MOSFETs / Package vs. Power Range
- 2. Features and application benefits of DOT package
- 3. Target applications
- 4. Conclusions

Conclusions

18


EcoSiC

- Established portfolio of 4th Generation SiC MOSFETs
- Devic technology for 750V, 1200V and 2000V
- Portfolio of bare die products, various discrete packages and modules.

New package: DOT-247-7L

- Closes the gap between high power modules and discrete devices.
- Flexible to use in both half-bridge and common-source topology.
- Can drive improvements in power density for various applications.

Ready to support you

- First devices are available including simulation models (PLECS, SPICE).
- Supporting material expanding continuously for various products and applications.
- HW support tools for DOT in preparation (EVKs for DPT / 3~ inverter)
- Our teams are looking forward to supporting your projects

Thank you for your attention!

Dr.-Ing. Christian Felgemacher
Director Application Engineering
christian.felgemacher@de.rohmeurope.com

